【題目】如圖所示,延長△ABC的各邊,使得BF=AC,AE=CD=AB,連結(jié)DE,EF,F(xiàn)D,得到△DEF為等邊三角形.
求證:(1)△AEF≌△CDE;
(2)△ABC為等邊三角形.
【答案】見解析
【解析】
(1)關(guān)鍵是證出CE=AF,可由AE=AB,AC=BF,兩兩相加可得.再結(jié)合已知條件可證出△AEF≌△CDE .
(2)有(1)中的全等關(guān)系,可得出∠AFE=∠CED,再結(jié)合△DEF是等邊三角形,可知∠DEF=60°,從而得出∠BAC=60°,同理可得∠ACB=60°,那么∠ABC=60°.因而△ABC是等邊三角形.
(1)∵BF=AC,AB=AE,
∴BF+AB=AC+AE,即FA=EC.
∵△DEF是等邊三角形,∴EF=DE.
又∵AE=CD,∴△AEF≌△CDE.
(2)由△AEF≌△CDE,得∠FEA=∠EDC.
∵△DEF是等邊三角形,∴∠DEF=60°.
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF,
∴∠BCA=60°.同理可得∠BAC=60°,
∴∠ABC=60°,∴△ABC為等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C在數(shù)軸上表示的數(shù)分別為a、b、c,且OA+OB=OC,則下列結(jié)論中:
①abc<0;②a(b+c)>0;③a﹣c=b;④ .
其中正確的個(gè)數(shù)有 ( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD的邊AD上的一動(dòng)點(diǎn),矩形的兩條邊AB、BC的長分別是6和8,則點(diǎn)P到矩形的兩條對(duì)角線AC和BD的距離之和是( 。
A.4.8
B.5
C.6
D.7.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要求八年級(jí)同學(xué)在課外活動(dòng)中,必須在五項(xiàng)球類(籃球、足球、排球、羽毛球、乒乓球)活動(dòng)中任選一項(xiàng)(只能選一項(xiàng))參加訓(xùn)練,為了了解八年級(jí)學(xué)生參加球類活動(dòng)的整體情況,現(xiàn)以八年級(jí)2班作為樣本,對(duì)該班學(xué)生參加球類活動(dòng)的情況進(jìn)行統(tǒng)計(jì),并繪制了如圖所示的不完整統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:
八年級(jí)2班參加球類活動(dòng)人數(shù)統(tǒng)計(jì)表 | |||||
項(xiàng)目 | 籃球 | 足球 | 乒乓球 | 排球 | 羽毛球 |
人數(shù) | a | 6 | 5 | 7 | 6 |
根據(jù)圖中提供的信息,解答下列問題:
(1)a= , b=
(2)該校八年級(jí)學(xué)生共有600人,則該年級(jí)參加足球活動(dòng)的人數(shù)約人;
(3)該班參加乒乓球活動(dòng)的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是一高為4米的平臺(tái),AB是與CD底部相平的一棵樹,在平臺(tái)頂C點(diǎn)測(cè)得樹頂A點(diǎn)的仰角α=30°,從平臺(tái)底部向樹的方向水平前進(jìn)3米到達(dá)點(diǎn)E,在點(diǎn)E處測(cè)得樹頂A點(diǎn)的仰角β=60°,求樹高AB(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠C=2∠B,D是BC邊上的一點(diǎn),且AD⊥AB,E是BD的中點(diǎn),連結(jié)AE.
求證:(1)∠AEC=∠C;
(2)BD=2AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在現(xiàn)今“互聯(lián)網(wǎng)+”的時(shí)代,密碼與我們的生活已經(jīng)緊密相連,密不可分,而諸如“123456”、生日等簡(jiǎn)單密碼又容易被破解,因此利用簡(jiǎn)單方法產(chǎn)生一組容易記憶的密碼就很有必要了,有一種用“因式分解”法產(chǎn)生的密碼、方便記憶,其原理是:將一個(gè)多項(xiàng)式分解因式,如多項(xiàng)式:因式分解的結(jié)果為,當(dāng)時(shí),此時(shí)可以得到數(shù)字密碼171920.
(1)根據(jù)上述方法,當(dāng)時(shí),對(duì)于多項(xiàng)式分解因式后可以形成哪些數(shù)字密碼?(寫出三個(gè))
(2)若一個(gè)直角三角形的周長是24,斜邊長為10,其中兩條直角邊分別為x、y,求出一個(gè)由多項(xiàng)式分解因式后得到的密碼(只需一個(gè)即可);
(3)若多項(xiàng)式因式分解后,利用本題的方法,當(dāng)時(shí)可以得到其中一個(gè)密碼為242834,求m、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過點(diǎn)D作DE⊥AF,垂足為點(diǎn)E
(1)求證:DE=AB;
(2)以A為圓心,AB長為半徑作圓弧交AF于點(diǎn)G,若BF=FC=1,求扇形ABG的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,則(m﹣1)2+(n﹣1)2的最小值是( )
A.6
B.3
C.﹣3
D.0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com