【題目】春節(jié)期間甲乙兩商場搞促銷活動.甲商場的方案是:在一個不透明的箱子里放4個完全相同的小球,球上分別標(biāo)“元”、“元”、“元”、“元”,顧客每消費滿元,就可從箱子里不放回地摸出個球,根據(jù)兩個小球所標(biāo)金額之和可獲相應(yīng)價格的禮品.乙商場的方案是:在一個不透明的箱子里放個完全相同的小球,球上分別標(biāo)“元”、“元”,顧客每消費滿元,就可從箱子里不放回地摸出個球,根據(jù)兩個小球所標(biāo)金額之和可獲相應(yīng)價格的禮品. 某顧客準(zhǔn)備消費元,
(1)若該顧客在甲商場消費,至少可得價值_________元的禮品,至多可得價值_________元的禮品;
(2)請用畫樹狀圖或列表法,說明該顧客去哪個商場消費,獲得禮品的總價值不低于元的概率大.
【答案】(1)20,80;(2)去甲商場消費,獲得不低于價值50元禮品的概率大.
【解析】
(1)根據(jù)題意即可求得該顧客至少可得的購物券,至多可得的購物券的金額;
(2)首先根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與該顧客所獲購物券的金額不低于50元的情況,再利用概率公式求解即可求得答案.
(1) 根據(jù)題意得:該顧客至少可得0+20=20(元),至多可得30+50=80(元).
故答案為:20,80.
(2)若在甲商場消費
兩個小球所標(biāo)金額之和共有12種等可能:20、30、50、20、50、70、30、50、80、50、70,其中不低于價值50元的占8種,所以.
若在乙商場消費
共有8種等可能:15、40、40、65、40、65、65、90,其中不低于價值50元的占4種,
所以.
因為,所以去甲商場消費,獲得不低于價值50元禮品的概率大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=–x2+1的頂點為P,點A是第一象限內(nèi)該二次函數(shù)圖像上一點,過點A作x軸的平行線交二次函數(shù)圖像于點B,分別過點B、A作x軸的垂線,垂足分別為C、D,連接PA、PD,PD交AB于點E,△PAD與△PEA相似嗎? ( )
A. 始終相似B. 始終不相似C. 只有AB=AD時相似D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)的圖象,下列說法正確的有____________.
①;②;③
④當(dāng)時,y隨x的增大而增大;
⑤方程的根是,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過點A(1,a),B(3,a),且頂點的縱坐標(biāo)為-4.
(1)求m,n和a的值;
(2)記二次函數(shù)圖象在點A,B間的部分為G (含點A和點B),若直線與圖象G有公共點,結(jié)合函數(shù)圖象,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經(jīng)過點C,且∠ACE+∠AFO=180°.
(1)求證:EM是⊙O的切線;
(2)若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為3的⊙O經(jīng)過等邊△ABO的頂點A、B,點P為半徑OB上的動點,連接AP,過點P作PC⊥AP交⊙O于點C,當(dāng)∠ACP=30°時,AP的長為( )
A. 3B. 3或C. D. 3或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過,兩點.將繞點逆時針旋轉(zhuǎn)90°得到,點在拋物線上.
(1)求該拋物線的表達式;
(2)已知點在軸上(點不與點重合),連接,若與相似,試求點的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD,F(xiàn)是對角線AC上的一點,過點D作DE∥AC,且DE=CF,連接AE、DE、EF.
(1)求證:△ADE≌△BCF;
(2)若∠BAF+∠AED=180°,求證:四邊形ABFE為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com