【題目】如圖,AB為⊙O的直徑,AC交⊙O于E點(diǎn),BC交⊙O于D點(diǎn),CD=BD,∠C=70°.現(xiàn)給出以下四種結(jié)論:①∠A=45°;②AC=AB;③AE=BE;④CEAB=2BD2 . 其中正確結(jié)論的序號(hào)是(

A.①②
B.②③
C.②④
D.③④

【答案】C
【解析】解:連接AD,
∵AB是⊙O的直徑,
∴∠ADB=90°.
∵CD=BD,
∴AD是BC的垂直平分線(xiàn),
∴AC=AB,故②正確;
∵AC=AB,
∴∠ABC=∠C=70°,
∴∠BAC=40°,故①錯(cuò)誤;
連接BE,DE,
∵AB為⊙O的直徑,
∴∠AEB=90°,
∵∠BAC=40°,
∴∠ABE=50°,
∴∠BAC≠∠ABE,
∴AE≠BE,故③錯(cuò)誤;
∵四邊形ABDE是圓內(nèi)接四邊形,
∴∠CDE=∠CAB,
∴△CDE∽△CAB,
= ,即 ,
∴CEAB=2BD2 , 故④正確.
故選C.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用相似三角形的判定與性質(zhì),掌握相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為正方形,點(diǎn)A坐標(biāo)為(0,1),點(diǎn)B坐標(biāo)為(0,﹣2),反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)C,一次函數(shù)y=ax+b的圖象經(jīng)過(guò)A,C兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABCDEC重合放置,其中C=900,B=E=300.

1)操作發(fā)現(xiàn)如圖2,固定ABC,使DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線(xiàn)段DEAC的位置關(guān)系是

設(shè)BDC的面積為S1,AEC的面積為S2。則S1S2的數(shù)量關(guān)系是 。

2)猜想論證

當(dāng)DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了BDCAECBC,CE邊上的高,請(qǐng)你證明小明的猜想。

3)拓展探究

已知ABC=600,點(diǎn)D是其角平分線(xiàn)上一點(diǎn),BD=CD=4,OEABBC于點(diǎn)E(如圖4),若在射線(xiàn)BA上存在點(diǎn)F,使SDCF =SBDC,請(qǐng)直接寫(xiě)出相應(yīng)的BF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹(shù)苗讓其栽種.已知乙種樹(shù)苗的價(jià)格比甲種樹(shù)苗貴10元,用480元購(gòu)買(mǎi)乙種樹(shù)苗的棵數(shù)恰好與用360元購(gòu)買(mǎi)甲種樹(shù)苗的棵數(shù)相同.

(1)求甲、乙兩種樹(shù)苗每棵的價(jià)格各是多少元?

(2)在實(shí)際幫扶中,他們決定再次購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共50棵,此時(shí),甲種樹(shù)苗的售價(jià)比第一次購(gòu)買(mǎi)時(shí)降低了10%,乙種樹(shù)苗的售價(jià)不變,如果再次購(gòu)買(mǎi)兩種樹(shù)苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買(mǎi)多少棵乙種樹(shù)苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC頂點(diǎn)的橫、縱坐標(biāo)都是整數(shù).若將△ABC以某點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°得到△DEF,則旋轉(zhuǎn)中心的坐標(biāo)是( )

A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(2.5,0.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)PM切⊙O于點(diǎn)M,直線(xiàn)PO交⊙O于A、B兩點(diǎn),弦AC∥PM,連接OM、BC.求證:

(1)△ABC∽△POM;
(2)2OA2=OPBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線(xiàn)相交于坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,2),點(diǎn)B的坐標(biāo)為(﹣1,﹣ ),點(diǎn)C的坐標(biāo)為(2 ,c),那么a,c的值分別是(

A.a=﹣1,c=﹣
B.a=﹣2 ,c=﹣2
C.a=1,c=
D.a=2 ,c=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角ABC中,∠BAC=90,ADBCDABC的平分線(xiàn)分別交AC、ADE、F兩點(diǎn),MEF的中點(diǎn),延長(zhǎng)AMBC于點(diǎn)N,連接DM.下列結(jié)論:①AE=AF;AMEF;AF=DF;DF=DN,其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)藥研究所開(kāi)發(fā)了一種新藥,在試驗(yàn)藥效時(shí)發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后2小時(shí)時(shí)血液中含藥量最高,達(dá)每毫升8微克(1000微克=1毫克),接著逐步衰減,10小時(shí)時(shí)血液中含藥量為每毫升4微克,每毫升血液中含藥量y(微克),隨時(shí)間x(小時(shí))的變化如圖所示.當(dāng)成人按規(guī)定劑量服藥后:
(1)求yx之間的解析式;
(2)如果每毫升血液中含藥量不低于3微克或3微克以上時(shí),在治療疾病時(shí)是有效的,那么這個(gè)有效時(shí)間是多少小時(shí)?

查看答案和解析>>

同步練習(xí)冊(cè)答案