【題目】如圖,將一張矩形紙片ABCD沿直線MN折疊,使點(diǎn)C落在點(diǎn)A處,點(diǎn)D落在點(diǎn)E處,直線MN交BC于點(diǎn)M,交AD于點(diǎn)N.
(1)求證:CM=CN;
(2)若△CMN的面積與△CDN的面積比為3:1,求的值.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)由折疊的性質(zhì)可得:∠ANM=∠CNM,由四邊形ABCD是矩形,可得∠ANM=∠CMN,則可證得∠CMN=∠CNM,繼而可得CM=CN.
(2)首先過(guò)點(diǎn)N作NH⊥BC于點(diǎn)H,由△CMN的面積與△CDN的面積比為3:1,易得MC=3ND=3HC,然后設(shè)DN=x,由勾股定理,可求得MN的長(zhǎng),繼而求得答案.
解:(1)證明:由折疊的性質(zhì)可得:∠ANM=∠CNM,
∵四邊形ABCD是矩形,∴AD∥BC.∴∠ANM=∠CMN.
∴∠CMN=∠CNM.∴CM=CN.
(2)過(guò)點(diǎn)N作NH⊥BC于點(diǎn)H,則四邊形NHCD是矩形.
∴HC=DN,NH=DC.
∵△CMN的面積與△CDN的面積比為3:1,
∴.
∴MC=3ND=3HC.∴MH=2HC.
設(shè)DN=x,則HC=x,MH=2x,∴CM=3x=CN.
在Rt△CDN中,,
∴HN=.
在Rt△MNH中,,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點(diǎn)E是AB 的中點(diǎn),連接CE交⊙O于點(diǎn)F,連接AF并延長(zhǎng)交BC于點(diǎn)H.
(1)若連接AO,試判斷四邊形AECO的形狀,并說(shuō)明理由;
(2)求證:AH是⊙O的切線;
(3)若AB=6,CH=2,則AH的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( 。
A.(,0)B.(2,0)C.(,0)D.(3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】倡導(dǎo)健康生活推進(jìn)全民健身,某社區(qū)去年購(gòu)進(jìn)A,B兩種健身器材若干件,經(jīng)了解,B種健身器材的單價(jià)是A種健身器材的1.5倍,用7200元購(gòu)買A種健身器材比用5400元購(gòu)買B種健身器材多10件.
(1)A,B兩種健身器材的單價(jià)分別是多少元?
(2)若今年兩種健身器材的單價(jià)和去年保持不變,該社區(qū)計(jì)劃再購(gòu)進(jìn)A,B兩種健身器材共50件,且費(fèi)用不超過(guò)21000元,請(qǐng)問(wèn):A種健身器材至少要購(gòu)買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過(guò)A(3,0),B(1,0)兩點(diǎn)(如圖1),頂點(diǎn)為M.
(1)a、b的值;
(2)設(shè)拋物線與y軸的交點(diǎn)為Q(如圖1),直線y=2x+9與直線OM交于點(diǎn)D. 現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.當(dāng)拋物線的頂點(diǎn)平移到D點(diǎn)時(shí),Q點(diǎn)移至N點(diǎn),求拋物線上的兩點(diǎn)M、Q間所夾的曲線MQ掃過(guò)的區(qū)域的面積;
(3)設(shè)直線y=2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D(如圖2).現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移的拋物線與射線CD(含端點(diǎn)C)沒(méi)有公共點(diǎn)時(shí),試探求其頂點(diǎn)的橫坐標(biāo)h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,點(diǎn)C在優(yōu)弧上,將沿BC折疊后剛好經(jīng)過(guò)AB的中點(diǎn)D,連接AC,CD.則下列結(jié)論中錯(cuò)誤的是( 。
①AC=CD;②AD=BD;③+=;④CD平分∠ACB
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)P.
(觀察猜想)
①AE與BD的數(shù)量關(guān)系是 ;
②∠APD的度數(shù)為 .
(數(shù)學(xué)思考)
如圖2,當(dāng)點(diǎn)C在線段AB外時(shí),(1)中的結(jié)論①、②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明;
(拓展應(yīng)用)
如圖3,點(diǎn)E為四邊形ABCD內(nèi)一點(diǎn),且滿足∠AED=∠BEC=90°,AE=DE,BE=CE,對(duì)角線AC、BD交于點(diǎn)P,AC=10,則四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖由長(zhǎng)為a,寬為b的矩形、(2m+1)個(gè)長(zhǎng)為4,寬為1的小矩形(為正整數(shù))和若干個(gè)小圓組成,其中小圓的直徑與小矩形的寬相等.
(1)當(dāng)m=1時(shí),a= ,b= ;
(2)當(dāng)a=24時(shí),求b的值;
(3)a的值能否等于30?請(qǐng)通過(guò)計(jì)算說(shuō)明理由;
(4)直接寫(xiě)出a與b的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=的圖象在第二象限內(nèi)交于點(diǎn)A,過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,OB=1.
(1)求該反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P是該反比例函數(shù)圖象上一點(diǎn),且△PAB的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com