【題目】問題情境:課堂上,同學(xué)們研究幾何變量之間的函數(shù)關(guān)系問題:如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AC=4,BD=2.點(diǎn)P是AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作MN⊥AC,垂足為點(diǎn)P(點(diǎn)M在邊AD、DC上,點(diǎn)N在邊AB、BC上).設(shè)AP的長(zhǎng)為x(0≤x≤4),△AMN的面積為y.
建立模型:(1)y與x的函數(shù)關(guān)系式為:,
解決問題:(2)為進(jìn)一步研究y隨x變化的規(guī)律,小明想畫出此函數(shù)的圖象.請(qǐng)你補(bǔ)充列表,并在如圖的坐標(biāo)系中畫出此函數(shù)的圖象:
x | 0 | 1 | 2 | 3 | 4 | ||||
y | 0 |
|
|
| 0 |
(3)觀察所畫的圖象,寫出該函數(shù)的兩條性質(zhì): .
【答案】(1) ①y=;②;(2)見解析;(3)見解析
【解析】
(1)根據(jù)線段相似的關(guān)系得出函數(shù)關(guān)系式(2)代入①中函數(shù)表達(dá)式即可填表(3)畫圖像,分析即可.
(1)設(shè)AP=x
①當(dāng)0≤x≤2時(shí)
∵M(jìn)N∥BD
∴△APM∽△AOD
∴
∴MP=
∵AC垂直平分MN
∴PN=PM=x
∴MN=x
∴y=APMN=
②當(dāng)2<x≤4時(shí),P在線段OC上,
∴CP=4﹣x
∴△CPM∽△COD
∴
∴PM=
∴MN=2PM=4﹣x
∴y==﹣
∴y=
(2)由(1)
當(dāng)x=1時(shí),y=
當(dāng)x=2時(shí),y=2
當(dāng)x=3時(shí),y=
(3)根據(jù)(1)畫出函數(shù)圖象示意圖可知
1、當(dāng)0≤x≤2時(shí),y隨x的增大而增大
2、當(dāng)2<x≤4時(shí),y隨x的增大而減小
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(3,0),B(0,﹣1),連接AB,過點(diǎn)B的垂線BC,使BC=BA,則點(diǎn)C坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月12日是第41個(gè)植樹節(jié),某單位積極開展植樹活動(dòng),決定購買甲、乙兩種樹苗,用800元購買甲種樹苗的棵數(shù)與用680元購買乙種樹苗的棵數(shù)相同,乙種樹苗每棵比甲種樹苗每棵少6元.
(1)求甲種樹苗每棵多少元?
(2)若準(zhǔn)備用3800元購買甲、乙兩種樹苗共100棵,則至少要購買乙種樹苗多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(3,m),B(﹣2,﹣3)是直線AB和某反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求直線AB和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出當(dāng)x滿足什么范圍時(shí),直線AB在雙曲線的下方;
(3)反比例函數(shù)的圖象上是否存在點(diǎn)C,使得△OBC的面積等于△OAB的面積?如果不存在,說明理由;如果存在,求出滿足條件的所有點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△關(guān)于軸對(duì)稱的△,并寫出△各頂點(diǎn)的坐標(biāo);
(2)將△向右平移6個(gè)單位,作出平移后的△,并寫出△各頂點(diǎn)的坐標(biāo);
(3)觀察△和△,它們是否關(guān)于某直線對(duì)稱?若是,請(qǐng)用粗線條畫出對(duì)稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊分別為a、b、c,則下列條件中不能判定△ABC是直角三角形的是( 。
A. b2=a2﹣c2B. a:b:c=1::2
C. ∠C=∠A﹣∠BD. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC的兩條高BD與CE相交于點(diǎn)O,且OB=OC,連接AO.
(1)求證:∠ABC=∠ACB;
(2)求證:AO垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點(diǎn),且∠AOB=90°,tan∠BAO=,則k的值為( 。
A. 2 B. ﹣2 C. 4 D. ﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC在正方形網(wǎng)格中,若點(diǎn)A的坐標(biāo)為(0,3),按要求回答下列問題:
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)直接寫出△ABC的面積;
(3)畫出一個(gè)△ACD,使得AD=,CD=,并寫出點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com