觀察下列等式
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個(gè)等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=  
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012
=
2011
2012
2011
2012

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n×(n+1)
=
n
n+1
n
n+1

(3)探究并計(jì)算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2010×2012
分析:觀察得到分子為1,分母為兩個(gè)相鄰整數(shù)的分?jǐn)?shù)可化為這兩個(gè)整數(shù)的倒數(shù)之差,即
1
n(n+1)
=
1
n
-
1
n+1
;然后根據(jù)此規(guī)律把各分?jǐn)?shù)轉(zhuǎn)化,再進(jìn)行分?jǐn)?shù)的加減運(yùn)算.對(duì)于(3)先提
1
4
出來,然后和前面的運(yùn)算方法一樣.
解答:解:(1)
1
n
-
1
n+1
;(2)①
2011
2012
;②
n
n+1
;
(3)原式=
1
4
1
1×2
+
1
2×3
+…+
1
1005×1006

=
1
4
×
1005
1006

=
1005
4024
點(diǎn)評(píng):本題考查了關(guān)于數(shù)字變化的規(guī)律:通過觀察數(shù)字之間的變化規(guī)律,得到一般性的結(jié)論,再利用此結(jié)論解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個(gè)等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2012×2013
=
2012
2013
2012
2013
;
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

(3)探究并計(jì)算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,
將以上三個(gè)等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2007×2008
=
2007
2008
2007
2008

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個(gè)等式兩邊分別相加得
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009
=
2008
2009
2008
2009

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

(3)探究并計(jì)算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2008×2010

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列等式
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,
將以上三個(gè)等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+1)
=
1
n
-
1
n+1
;
(2)直接寫出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012
=
2011
2012
2011
2012

(3)如果有理數(shù)a,b滿足|ab-2|+(1-a)2=0,試求 
1
(a+1)(b+2)
+
1
(a+3)(b+4)
+
1
(a+5)(b+6)
+…+
1
(a+2009)(b+2010)

查看答案和解析>>

同步練習(xí)冊(cè)答案