【題目】在平面直角坐標(biāo)系的網(wǎng)格中,橫、縱坐標(biāo)均為整數(shù)的點叫做格點,例如:,,,都是格點.請選擇適當(dāng)?shù)母顸c,用無刻度的直尺在網(wǎng)格中完成下列畫圖保留連線的痕跡,不要求說明理由.
(1)若點為格點,以點、、、為頂點的四邊形是軸對稱圖形,在圖1中畫出所有符合題意的四邊形,并寫出點的坐標(biāo)以及四邊形的面積;
(2)如圖2,在線段上畫點,使得.
【答案】(1)點E為(,2)或(0,4);面積為6或8;(3)見詳解.
【解析】
(1)根據(jù)軸對稱圖形的性質(zhì),即可作出圖形,然后得到點E的坐標(biāo),求出四邊形的面積即可;
(2)連接AD,作AD的垂直平分線MN,交BC于點F,即點F為所求點.
解:(1)如圖所示,
則四邊形和四邊形是軸對稱圖形;
①點的坐標(biāo)為:(,2),
∴四邊形的面積為:;
②點的坐標(biāo)為:(0,4);
∴四邊形的面積為:;
綜合上述,點E的坐標(biāo)為:(,2)或(0,4);四邊形面積為:6或8.
(2)如圖,連接AD,作AD的垂直平分線MN,MN與BC交于點F,即點F為所求;
∵MN垂直平分AD,
∴∠AFM=∠DFM,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠B=∠C=90 ,M是BC的中點,DM平分∠ADC.
(1)若連接AM,則AM是否平分∠BAD?請你證明你的結(jié)論;
(2)線段DM與AM有怎樣的位置關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,四邊形OABC的頂點O是坐標(biāo)原點,點A坐標(biāo)(6,0),點B在y軸上,點C在第三象限角平分線上,動點P、Q同時從點O出發(fā),點P以1cm/s 的速度沿O→A→B勻速運動到終點B;點Q沿O→C→B→A運動到終點A,點Q在線段OC、CB、BA上分別作勻速運動,速度分別為V1cm/s、V2cm/s、V3cm/s.設(shè)點P運動的時間為t(s),△OPQ的面積為S(cm2),已知S與t之間的部分函數(shù)關(guān)系如圖(2)中的曲線段OE、曲線段EF和線段FG所示.
(1)V1= ,V2= ;
(2)求曲線段EF的解析式;
(3)補全函數(shù)圖象(請標(biāo)注必要的數(shù)據(jù));
(4)當(dāng)點P、Q在運動過程中是否存在這樣的t,使得直線PQ把四邊形OABC的面積分成11:13兩部分,若存在直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點H、G分別是邊CD、BC上的動點.連接AH、HG,點E為AH的中點,點F為GH的中點,連接EF.則EF的最大值與最小值的差為( )
A. 1 B. ﹣1 C. D. 2﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的頂點A、D分別落在x軸、y軸,OD=2OA=6,AD:AB=3:1.則點B的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺甲型設(shè)備比購買2臺乙型設(shè)備多花16萬元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少花6萬元.
(1)求甲、乙兩種型號設(shè)備的價格;
(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)我們已經(jīng)知道,在中,如果,則,下面我們繼續(xù)研究:如圖①,在中,如果,則與的大小關(guān)系如何?為此,我們把沿的平分線翻折,因為,所以點落在邊的點處,如圖②所示,然后把紙展平,連接,接下來,你能推出與的大小關(guān)系了嗎?試寫出說理過程.
(2)如圖③,在中,是角平分線,且,求證:.
(3)在(2)的條件下,若點、分別為、上的動點,且,,則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y1=x﹣m+1和y2= (n≠0)的圖象交于P,Q兩點.
(1)若y1的圖象過(n,0),且m+n=3,求y2的函數(shù)表達(dá)式:
(2)若P,Q關(guān)于原點成中心對稱.
①求m的值;
②當(dāng)x>2時,對于滿足條件0<n<n0的一切n總有y1>y2,求n0的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com