【題目】從邵陽市到長沙的高鐵列車里程比普快列車里程縮短了75千米,運行時間減少了4小時,已知邵陽市到長沙的普快列車里程為306千米,高鐵列車平均時速是普快列車平均時速的3.5倍.
(1)求高鐵列車的平均時速;
(2)某日劉老師從邵陽火車南站到長沙市新大新賓館參加上午11:00召開的會議,如果他買到當日上午9:20從邵陽市火車站到長沙火車南站的高鐵票,而且從長沙火車南站到新大新賓館最多需要20分鐘.試問在高鐵列車準點到達的情況下他能在開會之前趕到嗎?

【答案】
(1)解:設普快的平均時速為x千米/小時,高鐵列車的平均時速為3.5x千米/小時,

由題意得, =4,

解得:x=60,

經(jīng)檢驗,x=60是原分式方程的解,且符合題意,

則3.5x=210,

答:高鐵列車的平均時速為210千米/小時


(2)解:(306﹣75)÷(3.5×60)=1.1小時即66分鐘,

66+20=86分鐘,

而9:20到11:00相差100分鐘,

∵100>86,故在高鐵列車準點到達的情況下他能在開會之前趕到


【解析】(1)設普快的平均時速為x千米/小時,高鐵列車的平均時速為3.5x千米/小時,根據(jù)題意可得,高鐵走(306﹣75)千米比普快走306千米時間減少了4小時,據(jù)此列方程求解;(2)求出劉老師所用的時間,然后進行判斷.
【考點精析】掌握分式方程的應用是解答本題的根本,需要知道列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.

(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點A旋轉(zhuǎn),
①當∠EAC=90°時,求PB的長;
②直接寫出旋轉(zhuǎn)過程中線段PB長的最小值與最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣3,0),C(2,0),將△ABC繞點B順時針旋轉(zhuǎn)一定角度后使A落在y軸上,與此同時頂點C恰好落在y= 的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市開展一項自行車旅游活動,線路需經(jīng)A、B、C、D四地,如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:n為正整數(shù),點A1(x1 , y1),A2(x2 , y2),A3(x3 , y3),A4(x4 , y4)…An(xn , yn)均在直線y=x﹣1上,點B1(m1 , p1),B2(m2 , p2),B3(m3 , p3)…Bn(mn , pn)均在雙曲線y=﹣ 上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,A3B3⊥x軸,…,AnBn⊥x軸,BnAn+1⊥y軸,若點A1的橫坐標為﹣1,則點A2017的坐標為(
A.(﹣1,﹣2)
B.(2,1)
C.( ,﹣
D.( ,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1 , 作第1個正方形A1B1C1C;延長C1B1交x軸于點A2 , 作第2個正方形A2B2C2C1 , …,按這樣的規(guī)律進行下去,第2016個正方形的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和線段PE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打第一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率;
(2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(1,0),B(3,0),C(0,3).

(1)求拋物線的表達式及頂點D的坐標;
(2)如圖甲,點P是直線BC上方拋物線上一動點,過點P作y軸的平行線,交直線BC于點E,是否存在一點P,使線段PE的長最大?若存在,求出PE長的最大值;若不存在,請說明理由;
(3)如圖乙,過點A作y軸的平行線,交直線BC于點F,連接DA、DB四邊形OAFC沿射線CB方向運動,速度為每秒1個單位長度,運動時間為t秒,當點C與點B重合時立即停止運動,設運動過程中四邊形OAFC與四邊形ADBF重疊部分面積為S,請求出S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案