【題目】如圖,△ABC中,已知∠B和∠C的平分線相交于點(diǎn)F,經(jīng)過(guò)點(diǎn)F作DE//BC,交AB于D,交AC于點(diǎn)E,若BD+CE=9,則線段DE的長(zhǎng)為( )
A. 9 B. 8 C. 7 D. 6
【答案】A
【解析】
試題根據(jù)△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)F,可得∠DBF=∠FBC,∠ECF=∠FCB,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等,可得∠DFB=∠FBC,∠EFC=∠FCB,則有∠DBF=∠DFB,∠EFC=∠ECF,根據(jù)等角對(duì)等邊可得BD=FD,EC=EF,然后利用等量代換即可求出線段DE的長(zhǎng).
∵BF為∠ABC的平分線,CF為∠ACB的平分線,
∴∠DBF=∠FBC,∠ECF=∠FCB,
∵DE∥BC,
∴∠DFB=∠FBC,∠EFC=∠FCB,
∴∠DBF=∠DFB,∠EFC=∠ECF,
∴BD=FD,EC=EF,
則DE=DF+FE=BD+CE=9,
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+6分別與x軸、y軸交于點(diǎn)E,F(xiàn),已知點(diǎn)E的坐標(biāo)為(-8,0),點(diǎn)A的坐標(biāo)為(-6,0).
(1)求k的值;
(2)若點(diǎn)P(x,y)是該直線上的一個(gè)動(dòng)點(diǎn),探究:當(dāng)△OPA的面積為27時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,線段AB⊥BC于點(diǎn)B,CD⊥BC于點(diǎn)C,點(diǎn)E在線段BC上,且AE⊥DE.
(1)求證:∠EAB=∠CED;
(2)如圖2,AF、DF分別平分∠BAE和∠CDE,EH平分∠DEC交CD于點(diǎn)H,EH的反向延長(zhǎng)線交AF于點(diǎn)G.
①求證EG⊥AF;
②求∠F的度數(shù).(提示:三角形內(nèi)角和等于180度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA為⊙O的切線,A為切點(diǎn),過(guò)A作OP的垂線AB,垂足為點(diǎn)C,交⊙O于點(diǎn)B,延長(zhǎng)BO與⊙O交于點(diǎn)D,與PA的延長(zhǎng)線交于點(diǎn)E.
(1)求證:PB為⊙O的切線;
(2)若tan∠ABE= ,求sin∠E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是直線AB上一點(diǎn),OD平分∠BOC,∠COE=90°.
(1)若∠AOC=48°,求∠DOE的度數(shù).
(2)若∠AOC=α,則∠DOE= (用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點(diǎn),且AE=BC,∠1=∠2.
(1)證明:AB=AD+BC;
(2)判斷△CDE的形狀?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向A點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB為⊙O直徑,BC為⊙O切線,切點(diǎn)為B,CO平行于弦AD,作直線DC.
①求證:DC為⊙O切線;
②若ADOC=8,求⊙O半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從﹣1,0,1,3,4,這五個(gè)數(shù)中任選一個(gè)數(shù)記為a,則使雙曲線y= 在第一、三象限且不等式組 無(wú)解的概率是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com