拋物線y=ax2+bx+c的頂點坐標是(-1,3),且過點(0,5),那么二次函數(shù)y=ax2+bx+c的解析式為
A.y=-2x2+4x+5B.y=2x2+4x+5
C.y=-2x2+4x-1D.y=2x2+4x+3
B

試題分析:由頂點坐標是(-1,3)可設(shè)函數(shù)關(guān)系式為,再把(0,5)代入即可求得函數(shù)關(guān)系式,最后化為一般式即可.
由題意函數(shù)關(guān)系式為
∵圖象過點(0,5)
,
∴函數(shù)關(guān)系式為
故選B.
點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握待定系數(shù)法求函數(shù)關(guān)系式,即可完成.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是二次函數(shù)的圖象,其頂點坐標為M(1,-4).

(1)求出圖象與軸的交點A,B的坐標;
(2)在二次函數(shù)的圖象上是否存在點P,使,若存在,求出P點的坐標;若不存在,請說明理由;
(3)將二次函數(shù)的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個新的圖象,請你結(jié)合這個新的圖象回答:當直線與此圖象有兩個公共點時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分6分)
手工課上,小明準備做一個形狀是菱形的風(fēng)箏,這個菱形的兩條對角線長度之和恰好為60cm,菱形的面積S(單位:cm2)隨其中一條對角線的長x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當x是多少時,菱形風(fēng)箏面積S最大?最大面積是多少?
參考公式:當x=-時,二次函數(shù)y=ax2+bx+c(a≠0)有最。ù螅┲

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)圖象如圖所示,根據(jù)圖象可得:

(1)拋物線頂點坐標             ;
(2)對稱軸為                
(3)當x=    時,y有最大值是       ;
(4)當              時,y隨著x得增大而增大。
(5)當              時,y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點坐標是(    )
A.(2,-3);B.(0,-3);C.(-3,0);D.(2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖為拋物線的圖像,A、B、C 為拋物線與坐標軸的交點,且OA=OC=1,則下列關(guān)系中正確的是(  )

A.a(chǎn)+b=-1             B.a(chǎn)-b=-1         C.b<2a       D.a(chǎn)c<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的最小值為3,則a=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面的材料:
小明在學(xué)習(xí)中遇到這樣一個問題:若1≤xm,求二次函數(shù)的最大值.他畫圖研究后發(fā)現(xiàn),時的函數(shù)值相等,于是他認為需要對進行分類討論.
他的解答過程如下:
∵二次函數(shù)的對稱軸為直線,
∴由對稱性可知,時的函數(shù)值相等.
∴若1≤m<5,則時,的最大值為2;
m≥5,則時,的最大值為

請你參考小明的思路,解答下列問題:
(1)當x≤4時,二次函數(shù)的最大值為_______;
(2)若px≤2,求二次函數(shù)的最大值;
(3)若txt+2時,二次函數(shù)的最大值為31,則的值為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

商場某種商品平均每天可銷售30件,每件盈利50元. 為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施. 經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出 2件.設(shè)每件商品降價x元. 據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加    件,每件商品盈利    元(用含x的代數(shù)式表示);
(2)在上述條件不變的情況下,每件商品降價多少元時,商場日盈利可達到2100元?

查看答案和解析>>

同步練習(xí)冊答案