(本小題10分)
將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長(zhǎng)直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2,P是AC上的一個(gè)動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到∠ABC的平分線上時(shí),連接DP,求DP的長(zhǎng);
(2)當(dāng)點(diǎn)P在運(yùn)動(dòng)過(guò)程中出現(xiàn)PD=BC時(shí),求此時(shí)∠PDA的度數(shù);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),以D、P、B、Q為頂點(diǎn)的平行四邊形的頂點(diǎn)Q恰好在邊BC上?求出此時(shí)□DPBQ的面積.
解:在Rt△ABC中,AB=2,∠BAC=30°,∴BC=,AC=3.
(1)如圖(1),作DF⊥AC,∵Rt△ACD中,AD=CD,∴DF=AF=CF=
∵BP平分∠ABC,∴∠PBC=30°,∴CP=BC·tan30°=1,∴PF=,∴DP=. 3分

(2)當(dāng)P點(diǎn)位置如圖(2)所示時(shí),根據(jù)(1)中結(jié)論,DF=,∠ADF=45°,又PD=BC=,∴cos∠PDF=,∴∠PDF=30°.
∴∠PDA=∠ADF-∠PDF=15°.
當(dāng)P點(diǎn)位置如圖(3)所示時(shí),同(2)可得∠PDF=30°.
∴∠PDA=∠ADF+∠PDF=75°.3分

(3)CP=.1分
在□DPBQ中,BC∥DP,∵∠ACB=90°,∴DP⊥AC.根據(jù)(1)中結(jié)論可知,DP=CP=,∴S□DPBQ=.3分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(6分)如圖,四邊形ABCD中,AD不平行BC,現(xiàn)給出三個(gè)條件:①∠CAB=∠DBA;
②AC=BD;③AD=BC.請(qǐng)你從上述三個(gè)條件中選擇兩個(gè)條件,使得加上這兩個(gè)條件
后能夠推出四邊形ABCD是等腰梯形,并加以說(shuō)明(只需說(shuō)明一種情況).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

□ABCD中,點(diǎn)E在邊AD上,以BE為折痕將△ABE向上翻折,點(diǎn)A正好落在CD的點(diǎn)F處,若△FDE的周長(zhǎng)為8,△FCB的周長(zhǎng)為22,則YABCD的周長(zhǎng)為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)在中,繞點(diǎn)順時(shí)針旋轉(zhuǎn)角于點(diǎn),分別交兩點(diǎn).
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過(guò)程中,線段有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖2,當(dāng)時(shí),試判斷四邊形的形狀,并說(shuō)明理由;
(3)在(2)的情況下,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分8分)
如圖,ABCD是正方形,點(diǎn)GBC上的任意一點(diǎn),E,,交AGF
求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,有長(zhǎng)方形ABCD紙片,將△BCD沿對(duì)角線折疊,記點(diǎn)C的對(duì)應(yīng)點(diǎn)為.若∠AD=20°,則∠BDC      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,等腰梯形ABCD下底與上底的差恰好等于腰長(zhǎng),DE∥AB,則DEC等于______
                

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題



動(dòng)手操作:在矩形紙片中,.如圖所示,折疊紙片,使點(diǎn) 落在邊上的處,折痕為.當(dāng)點(diǎn)邊上移動(dòng)時(shí),折痕的端點(diǎn)也隨之移動(dòng).若限定點(diǎn)分別在邊上移動(dòng),則點(diǎn)邊上距B點(diǎn)可移動(dòng)的最短距離為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)如圖12,在△ABC中,AC=BC,∠B=30°,DAC的中點(diǎn),E是線段BC延長(zhǎng)線上一動(dòng)點(diǎn),過(guò)點(diǎn)AAFBE,與線段ED的延長(zhǎng)線交于點(diǎn)F,連結(jié)AECF.
(1)求證:AF=CE;
(2)若CE=BC,試判斷四邊形AFCE是什么樣的四邊形,并證明你的結(jié)論;
(3)若CE= BC,求證:EFAC.

查看答案和解析>>

同步練習(xí)冊(cè)答案