【題目】如圖,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分線.若在邊AB上截取BE=BC,連接DE,則圖中等腰三角形共有(
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】D
【解析】解:∵AB=AC, ∴△ABC是等腰三角形;
∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵BD是△ABC的角平分線,
∴∠ABD=∠DBC= ∠ABC=36°,
∴∠A=∠ABD=36°,
∴BD=AD,
∴△ABD是等腰三角形;
在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,
∴∠C=∠BDC=72°,
∴BD=BC,
∴△BCD是等腰三角形;
∵BE=BC,
∴BD=BE,
∴△BDE是等腰三角形;
∴∠BED=(180°﹣36°)÷2=72°,
∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,
∴∠A=∠ADE,
∴DE=AE,
∴△ADE是等腰三角形;
∴圖中的等腰三角形有5個(gè).
故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC,AB的垂直平分線與直線AC相交所成銳角為40°,則此等腰三角形的頂角為(
A.50°
B.60°
C.150°
D.50°或130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋時(shí)期杰出的數(shù)學(xué)家楊輝是錢塘人,下面的圖表是他在《詳解九章算術(shù)》中記載的“楊輝三角”.此圖揭示了 (為非負(fù)整數(shù))的展開(kāi)式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律.

(1)請(qǐng)仔細(xì)觀察,填出(a+b)4的展開(kāi)式中所缺的系數(shù).(a+b)4=a4+4a3b+a2b2+4ab2+b4
(2)此規(guī)律還可以解決實(shí)際問(wèn)題:假如今天是星期三,再過(guò)7天還是星期三,那么再過(guò) 天是星期

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王去早市為餐館選購(gòu)蔬菜,他指著標(biāo)價(jià)為每斤3元的豆角問(wèn)攤主:這豆角能便宜嗎?攤主:多買按八折,你要多少斤?小王報(bào)了數(shù)量后攤主同意按八折賣給小王,并說(shuō):之前一人只比你少買5斤就是按標(biāo)價(jià),還比你多花了3元呢!小王購(gòu)買豆角的數(shù)量是( 。

A. 30 B. 25 C. 20 D. 15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)跨越式發(fā)展,我市新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).新區(qū)建設(shè)工程部,因道路建設(shè)需要開(kāi)挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3 , 現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來(lái)完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如表:

租金(單位:元/臺(tái)·時(shí))

挖掘土石方量(單位:m3/臺(tái)·時(shí))

甲型挖掘機(jī)

100

60

乙型挖掘機(jī)

120

80


(1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型號(hào)的挖掘機(jī)各需多少臺(tái)?
(2)如果每小時(shí)支付的租金不超過(guò)850元,又恰好完成每小時(shí)的挖掘量,那么共有幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,AB=8,周長(zhǎng)等于24,則AD=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式3(x﹣1)≤5﹣x的非負(fù)整數(shù)解有(  )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( 。

A.相等的圓周角所對(duì)的弧相等

B.相等的弦所對(duì)的弧相等

C.平分弦的直徑一定垂直于弦

D.任意三角形一定有一個(gè)外接圓

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程(2ax22x+10有兩個(gè)不相等的實(shí)數(shù)根,則整數(shù)a的最小值是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案