【題目】已知點O是正方形ABCD對角線BD的中點.
(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.
①∠AEM=∠FEM; ②點F是AB的中點;
(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;
(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結論).
【答案】(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).
【解析】
試題分析:(1)①過點E作EG⊥BC,垂足為G,根據ASA證明△CEG≌△FEM得CE=FE,再根據SAS證明△ABE≌△CBE 得AE=CE,在△AEF中根據等腰三角形“三線合一”即可證明結論成立;②設AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x, DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM (ASA),得AM=FM,設AM=x,則AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.
試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB, ∴∠AEM=∠FEM.
②設AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點F是AB的中點.
(2)△EFC是等腰直角三角形.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設AM=x,則DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.
(3) 過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG. ∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.設AM=x,則AF=2x,DN =x,DE=x,∴BD=x. ∴AB=x.∴=2x:x=.
科目:初中數學 來源: 題型:
【題目】如圖①,等腰直角三角形ABC的頂點A的坐標為 ,C的坐標為 ,直角頂點B在第四象限,線段AC與x軸交于點D.將線段DC繞點D逆時針旋轉90°至DE.
(1)直接寫出點B、D、E的坐標并求出直線DE的解析式.
(2)如圖②,點P以每秒1個單位的速度沿線段AC從點A運動到點C的過程中,過點P作與x軸平行的直線PG,交直線DE于點G,求與△DPG的面積S與運動時間t的函數關系式,并求出自變量t的取值范圍.
(3)如圖③,設點F為直線DE上的點,連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FE以每秒 個單位的速度運動到E后停止.當點F的坐標是多少時,是否存在點M在整個運動過程中用時最少?若存在,請求出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道一次函數 與 的圖象關于 軸對稱,所以我們定義:函數 與 互為“鏡子”函數.
(1)請直接寫出函數 的“鏡子”函數
(2)如果一對“鏡子”函數 與 的圖象交于點 ,且與 軸交于 、 兩點,如圖所示,若 ,且 的面積是 ,求這對“鏡子”函數的解析式.
(3)若點 是 軸上的一個動點,當 為等腰三角形時,直接寫出點 的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電腦公司銷售部為了定制下個月的銷售計劃,對20位銷售員本月的銷售量進行了統(tǒng)計,繪制成如圖所示的統(tǒng)計圖,則這20位銷售人員本月銷售量的平均數、中位數、眾數分別是( )
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】利用二元一次方程組解應用題:甲、乙兩地相距 ,一輛汽車和一輛拖拉機同時由兩地以各自的速度勻速相向而行, 小時后相遇.相遇后,拖拉機以其原速繼續(xù)前進,汽車在相遇處停留 小時后調轉車頭以其原速返回,在汽車再次出發(fā)半小時追上拖拉機.這時,汽車、拖拉機各自走了多少路程?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com