在下列條件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能確定△ABC是直角三角形的條件有 (      )
A.1個B.2個C.3個D.4個
C.

試題分析:①因為∠A+∠B=∠C,則2∠C=180°,∠C=90°;
②因為∠A:∠B:∠C=1:2:3,設(shè)∠A=x,則x+2x+3x=180°,x=30°,∠C=30°×3=90°;
③因為∠A=90°﹣∠B,所以∠A+∠B=90°,則∠C=180°﹣90°=90°,為直角三角形;
④因為∠A=∠B=∠C,所以三角形為等邊三角形.
所以能確定△ABC是直角三角形的有①②③共3個.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC中,AB=AC,,AB的中垂線交AB于D,交CA延長線于E,求證:DE=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圖1和圖2都是7×4正方形網(wǎng)格,每個小正方形的邊長為l,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.
(1)在圖1中畫出一個等腰直角三角形ABC;

(2)在圖2中畫出一個鈍角三角形ABD,使△ABD的面為3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB+AC=7,D是AB上一點,若點D在 BC的垂直平分線上,則△ACD的周長為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,BD是∠ABC的角平分線,已知∠ABC=80°,則∠DBC=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,AB=AC,∠BAC=90°,O為BC中點.

(1)寫出O點到△ABC三個頂點A、B、C的距離關(guān)系(不要求證明);
(2)如果M、N分別在線段AB、AC上移動,在移動過程中保持AN=BM,請判斷△OMN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列是勾股數(shù)的一組是
A.4,5,6B.5,7,12C.12,13,15D.21,28,35

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

我國古代數(shù)學(xué)家趙爽的“勾股方圓圖”是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a和b,那么(a+b)2的值為
A.49B.25C.13D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于點D,且AB=4,BD=5,則點D到BC的距離是( 。
A.3 B.4C.5 D.6

查看答案和解析>>

同步練習(xí)冊答案