【題目】如圖,字母S由兩條圓弧KL、MN和線段LM組成,這兩條圓弧每一條都是一個(gè)半徑為1的圓的圓周的,線段LM與兩個(gè)圓相切.KN分別是兩個(gè)圓的切點(diǎn),則線段LM的長(zhǎng)為_________

【答案】2

【解析】

連接OL,OK, OM , OOLMO,則∠LOK=(1-)360=135,

由切線的性質(zhì)可知∠KOO=90,可得∠L OO =45,又由切線的性質(zhì)可知∠OLO=90,故△OLO為等腰直角三角形,LO=OL=1,同理可得OM=1,可求線段LM的長(zhǎng).

:如圖,

連接OL,OK,OM,OOLMO,

依題意,

LOK=(1-)360=135,

O,O為等圓,K為切點(diǎn),

KOO=90,

L OO=LOK-KO0=135-90=45

MO相切于點(diǎn)L, OLO=90,

OL0為等腰直角三角形,LO= OL=1,同理可得OM=1,

LM=LO+OM=2.

故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yx2+(m﹣1)x+3的圖象過(guò)點(diǎn)(2,﹣1),

(1)求此二次函數(shù)的解析式;

(2)畫出這個(gè)二次函數(shù)的圖象;并確定y>0時(shí),x的取值范圍?

(3)設(shè)此二次函數(shù)圖象與x軸交點(diǎn)分別為A、BAB左側(cè))與y軸交點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是由8個(gè)大小相同的小正方體組合成的簡(jiǎn)單幾何體.

(1)該幾何體的主視圖如圖所示,請(qǐng)?jiān)谙旅娣礁窦堉蟹謩e畫出它的左視圖和俯視圖;(邊框線加粗畫出,并涂上陰影)

(2)如果在這個(gè)幾何體上再添加一些相同的小正方體,并保持這個(gè)幾何體的俯視圖和主視圖不變,那么請(qǐng)?jiān)谙铝芯W(wǎng)格圖中畫出添加小正方體后所得幾何體所有可能的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c經(jīng)過(guò)AB、C三點(diǎn),已知點(diǎn)A(﹣30),B0,m),C1,0).

1)求m值;

2)設(shè)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)AB重合).

①過(guò)點(diǎn)Px軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PDAB于點(diǎn)D.動(dòng)點(diǎn)P在什么位置時(shí),PDE的周長(zhǎng)最大,求出此時(shí)P點(diǎn)的坐標(biāo);

②連接AP,并以AP為邊作等腰直角APQ,當(dāng)頂點(diǎn)Q恰好落在拋物線的對(duì)稱軸上時(shí),求出對(duì)應(yīng)的點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時(shí)測(cè)得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無(wú)觸礁危險(xiǎn)?請(qǐng)通過(guò)計(jì)算加以說(shuō)明.如果有危險(xiǎn),輪船自A處開(kāi)始至少沿東偏南多少度方向航行,才能安全通過(guò)這一海域?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車分別從相距480kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),并以各自的速度勻速行駛,途徑C地,甲車到達(dá)C地停留1小時(shí),因有事按原路原速返回A地.乙車從B地直達(dá)A地,兩車同時(shí)到達(dá)A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖,結(jié)合圖象信息解答下列問(wèn)題:

1)乙車的速度是   千米/時(shí),t  小時(shí);

2)求甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)直接寫出乙車出發(fā)多長(zhǎng)時(shí)間兩車相距120千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點(diǎn),過(guò)點(diǎn)軸于點(diǎn),過(guò)點(diǎn)軸于點(diǎn),連接、,下列說(shuō)法正確的是(

A. 點(diǎn)和點(diǎn)關(guān)于原點(diǎn)對(duì)稱 B. 當(dāng)時(shí),

C. D. 當(dāng)時(shí),、都隨的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=(m+2x22m+2xm+5,其中m+20

1)求該二次函數(shù)的對(duì)稱軸方程;

2)過(guò)動(dòng)點(diǎn)C0,n)作直線ly軸.

①當(dāng)直線l與拋物線只有一個(gè)公共點(diǎn)時(shí),求nm的函數(shù)關(guān)系;

②若拋物線與x軸有兩個(gè)交點(diǎn),將拋物線在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.當(dāng)n7時(shí),直線l與新的圖象恰好有三個(gè)公共點(diǎn),求此時(shí)m的值;

3)若對(duì)于每一個(gè)給定的x的值,它所對(duì)應(yīng)的函數(shù)值都不小于1,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案