【題目】如圖,E,F(xiàn)分別是矩形ABCD的邊AD,AB上的點(diǎn),若EF=EC,且EF⊥EC.
(1)求證:AE=DC;
(2)已知DC= ,求BE的長(zhǎng).
【答案】
(1)證明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥EC,
∴∠FEC=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
在△AEF和△DCE中,
,
∴△AEF≌△DCE(AAS),
∴AE=DC
(2)解:由(1)得AE=DC,
∴AE=DC= ,
在矩形ABCD中,AB=CD= ,
在R△ABE中,AB2+AE2=BE2,即( )2+( )2=BE2,
∴BE=2
【解析】(1)根據(jù)矩形的性質(zhì)和已知條件可證明△AEF≌△DCE,可證得AE=DC;(2)由(1)可知AE=DC,在Rt△ABE中由勾股定理可求得BE的長(zhǎng).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和矩形的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DBC是兩個(gè)具有公共邊的全等三角形,AB=AC=3cm.BC=2cm,將△DBC沿射線BC平移一定的距離得到△D1B1C1,連接AC1,BD1.如果四邊形ABD1C1是矩形,那么平移的距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列調(diào)查中,最適合采用全面調(diào)查的是( )
A. 對(duì)常州市居民日平均用水量的調(diào)查
B. 對(duì)一批LED節(jié)能燈使用壽命的調(diào)查
C. 對(duì)常州新聞?lì)l道“政風(fēng)熱線”欄目收視率的調(diào)查
D. 對(duì)某校八年級(jí)(2)班同學(xué)的視力情況的調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(k>0).
(1)當(dāng)k=時(shí),求這個(gè)二次函數(shù)的頂點(diǎn)坐標(biāo);
(2)求證:關(guān)于x的一元次方程有兩個(gè)不相等的實(shí)數(shù)根;
(3)如圖,該二次函數(shù)與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于C點(diǎn),P是y軸負(fù)半軸上一點(diǎn),且OP=1,直線AP交BC于點(diǎn)Q,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=∠COD=90°,OE平分∠AOC,∠AOD=120°.
(1)求∠BOC的度數(shù);
(2)求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿(mǎn)足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中:
(1)用直尺和圓規(guī),在AB上找一點(diǎn)D,使點(diǎn)D到B、C兩點(diǎn)的距離相等(不寫(xiě)作法.保留作圖痕跡)
(2)連接CD,已知CD=AC,∠B=25°,求∠ACB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com