【題目】如圖,在菱形ABOC中,∠ABO=120°,它的一個(gè)頂點(diǎn)C在反比例函數(shù)y=的圖象上,若將菱形向下平移2個(gè)單位,點(diǎn)A恰好落在函數(shù)圖象上,則該反比函數(shù)的表達(dá)式為( 。

A. y=﹣ B. y=﹣ C. y=﹣ D. y=-

【答案】B

【解析】

點(diǎn)CCDx軸于D,設(shè)菱形的邊長(zhǎng)為a,根據(jù)菱形的性質(zhì)和三角函數(shù)分別表示出C,以及點(diǎn)A向下平移2個(gè)單位的點(diǎn),再根據(jù)反比例函數(shù)的圖像上點(diǎn)的坐標(biāo)特征得到方程組求解即可.

過點(diǎn)CCDx軸于D,

設(shè)菱形的邊長(zhǎng)為a,

RtCDO中,OD=acos60°=a,CD=asin60°=a,

C(﹣a, a),

點(diǎn)A向下平移2個(gè)單位的點(diǎn)為(﹣a﹣a, a﹣2),即(﹣a, a﹣2),

,

解得

故反比例函數(shù)解析式為y=﹣

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作圖與圖形變換

(尺規(guī)作圖)(不寫作法,保留作圖痕跡)

如圖,一輛汽車在直線形的公路上由點(diǎn)A向點(diǎn)B行駛,M,N 是分別位于公路兩側(cè)的村莊.

1)在圖1中求作一點(diǎn)P,使汽車行駛到此位置時(shí),與村莊M,N的距離之和最。

2)在圖2中求作一點(diǎn)Q,使汽車行駛到此位置時(shí),與村莊 M,N 的距離相等.

(圖形變換)

如圖3所示,在正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).

3)把△ABC 沿 BA 方向平移后,點(diǎn) A 移到點(diǎn),請(qǐng)你在網(wǎng)格中畫出平移后得到的

4)把繞點(diǎn) 按逆時(shí)針方向旋轉(zhuǎn) 90°,請(qǐng)你在網(wǎng)格中畫出旋轉(zhuǎn)后的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小紅在剩下的3個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y

(1)計(jì)算由x、y確定的點(diǎn)(x,y)在函數(shù)y=﹣x+5的圖象上的概率.

(2)小明和小紅約定做一個(gè)游戲,其規(guī)則為:若x、y滿足xy6,則小明勝;若x、y滿足xy6,則小紅勝,這個(gè)游戲公平嗎?請(qǐng)說明理由;若不公平,請(qǐng)寫出公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形ABCD折疊使A,C重合,折痕交BCE,交ADF,

1)求證:四邊形AECF為菱形;

2)若AB=4,BC=8,求菱形的邊長(zhǎng);

3)在(2)的條件下折痕EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,經(jīng)過點(diǎn)O的直線l將四邊形分成兩部分,直線lOC所成的角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點(diǎn)C落在點(diǎn)D處,我們把這個(gè)操作過程記為FZ[θ,a].

(理解)

若點(diǎn)D與點(diǎn)A重合,則這個(gè)操作過程為FZ[45°,3];

(嘗試)

(1)若點(diǎn)D恰為AB的中點(diǎn)(如圖2),求θ;

(2)經(jīng)過FZ[45°,a]操作,點(diǎn)B落在點(diǎn)E處,若點(diǎn)E在四邊形OABC的邊AB上,求出a的值;若點(diǎn)E落在四邊形OABC的外部,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個(gè)外角.

實(shí)驗(yàn)與操作:根據(jù)要求進(jìn)行尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)

(1)作∠DAC的平分線AM

(2)作線段AC的垂直平分線,與AM交于點(diǎn)F,與BC邊交于點(diǎn)E,連接AECF

探究與猜想:若∠BAE=36°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點(diǎn)PB出發(fā)沿BA方向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)QA出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm/s.連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問題:

1)當(dāng)t為何值時(shí),PQ∥BC

2)設(shè)△AQP面積為S(單位:cm2),當(dāng)t為何值時(shí),S取得最大值,并求出最大值.

3)是否存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.

4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時(shí)刻t,使四邊形AQPQ′為菱形?若存在,求出此時(shí)菱形的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內(nèi)一點(diǎn),且OA=OB=OD.求證:

(1)∠BOD=∠C;

(2)四邊形OBCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新定義運(yùn)算“◎”,對(duì)于任意有理數(shù)a、b,都有a◎b=a2﹣ab+b﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投擲一枚印有數(shù)字1~6的質(zhì)地均勻的骰子,將朝上的點(diǎn)數(shù)作為x的值,則代數(shù)式(x﹣3)◎(3+x)的值為非負(fù)數(shù)的概率是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案