【題目】在△ABC中,AB=AC,點D是BC上一點(不與B,C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,若∠BAC=90°,
①求證;△ABD≌△ACE;②求∠BCE的度數(shù).
(2)設(shè)∠BAC=α,∠BCE=β.如圖2,則α,β之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
【答案】(1)①證明見解析;②∠BCE=90°;(2)α+β=180°,理由見解析.
【解析】(1)①∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.
在△ABD與△ACE中,
,
∴△ABD≌△ACE(SAS);
②∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.
在△ABD與△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;
(2)α+β=180°,
理由:∵∠BAC=∠DAE,
∴∠BAD+∠DAC=∠EAC+∠DAC.
即∠BAD=∠CAE.
在△ABD與△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β,
∵α+∠B+∠ACB=180°,
∴α+β=180°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥DC,∠A=90°,AE=DC.∠1=∠2,
(1)△BEC是等腰直角三角形嗎?并說明理由;
(2)若AB=6,BE=10,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標;
(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人利用不同的交通工具,沿同一路線分別從A、B兩地同時出發(fā)勻速前往C地(B在A、C兩地的途中).設(shè)甲、乙兩車距A地的路程分別為y甲、y乙(千米),行駛的時間為x(小時),y甲、y乙與x之間的函數(shù)圖象如圖所示.
(1)直接寫出y甲、y乙與x之間的函數(shù)表達式;
(2)如圖,過點(1,0)作x軸的垂線,分別交y甲、y乙的圖象于點M,N.求線段MN的長,并解釋線段MN的實際意義;
(3)在乙行駛的過程中,當甲、乙兩人距A地的路程差小于30千米時,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點P為圓上一點,點C為AB延長線上一點,PA=PC,∠C=30°.
(1)求證:CP是⊙O的切線.
(2)若⊙O的直徑為8,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2﹣4x+2=0根的情況是( )
A.沒有實數(shù)根
B.只有一個實數(shù)根
C.有兩個相等的實數(shù)根
D.有兩個不相等的實數(shù)根
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com