【題目】如圖,某教學(xué)興趣小組想測(cè)量某建筑物的高度,他們?cè)?/span>A點(diǎn)測(cè)得屋頂C的仰角為30°,然后沿AD方向前進(jìn)10米,到達(dá)B點(diǎn),在B點(diǎn)測(cè)得屋頂C的仰角為60°,已知測(cè)量?jī)xAE的高度為1米,請(qǐng)你根據(jù)他們的測(cè)量數(shù)據(jù)計(jì)算建筑物CF的高度(結(jié)果保留根號(hào)).

【答案】建筑物CF的高度為(5+1)m

【解析】

首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長(zhǎng)度,然后在直角△BDC中,利用三角函數(shù)即可求解.

解:∵∠CAD=30°,CBD=60°,

∴∠ACB=30°,

∴∠ACB=CAB,

BA=BC=10,

RtCBD中,sinCBD=sin60°=

,

解得:CD=5,

CF=CD+DF=CD+AE=5+1.

答:建筑物CF的高度為(5+1)m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景

如圖1,在正方形ABCD的內(nèi)部,作DAE=ABF=BCG=CDH,根據(jù)三角形全等的條件,易得DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。

類(lèi)比研究

如圖2,在正ABC的內(nèi)部,作BAD=CBE=ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(diǎn)(D,E,F(xiàn)三點(diǎn)不重合)。

(1)ABD,BCE,CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;

(2)DEF是否為正三角形?請(qǐng)說(shuō)明理由;

(3)進(jìn)一步探究發(fā)現(xiàn),ABD的三邊存在一定的等量關(guān)系,設(shè),,請(qǐng)?zhí)剿?/span>,滿足的等量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線AB與坐標(biāo)軸交于A,B兩點(diǎn),線段OA,OC的長(zhǎng)是方程x2﹣3x+2=0的兩個(gè)根(OA>OC).

(1)求點(diǎn)A,C的坐標(biāo);

(2)直線AB與直線CD交于點(diǎn)E,若點(diǎn)E是線段AB的中點(diǎn),反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支經(jīng)過(guò)點(diǎn)E,求k的值;

(3)在(2)的條件下,點(diǎn)M在直線CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC,點(diǎn)ABC邊的上方,把ABC繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)60°DBE,繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)60°FEC,連接AD,AF.

(1)△ABD,△ACF,△BCE是什么特殊三角形?請(qǐng)說(shuō)明理由;

(2)當(dāng)ABC滿足什么條件時(shí),四邊形ADEF是正方形?請(qǐng)說(shuō)明理由;

(3)當(dāng)ABC滿足什么條件時(shí),以點(diǎn)A,DE,F為頂點(diǎn)的四邊形不存在?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,對(duì)角線AC,BD相交于O點(diǎn),點(diǎn)P是線段AD上一動(dòng)點(diǎn)(不與點(diǎn)D重合),PO的延長(zhǎng)線交BCQ點(diǎn).

1)求證:四邊形PBQD為平行四邊形.

2)若AB=3cm,AD=4cmP從點(diǎn)A出發(fā).以1cm/s的速度向點(diǎn)D勻速運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,問(wèn):四邊形PBQD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高鐵給我們的出行帶來(lái)了極大的方便.如圖,和諧號(hào)高鐵列車(chē)座椅后面的小桌板收起時(shí),小桌板的支架的底端N與桌面頂端M的距離MN=75cm,且可以看作與地面垂直.展開(kāi)小桌板使桌面保持水平,AB⊥MN,∠MAB=∠MNB=37°,且支架長(zhǎng)BN與桌面寬AB的長(zhǎng)度之和等于MN的長(zhǎng)度.求小桌板桌面的寬度AB(結(jié)果精確到1cm,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市在端午節(jié)期間開(kāi)展優(yōu)惠活動(dòng),凡購(gòu)物者可以通過(guò)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的方式享受折扣優(yōu)惠,本次活動(dòng)共有兩種方式,方式一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)甲,指針指向A區(qū)域時(shí),所購(gòu)買(mǎi)物品享受9折優(yōu)惠、指針指向其它區(qū)域無(wú)優(yōu)惠;方式二:同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)甲和轉(zhuǎn)盤(pán)乙,若兩個(gè)轉(zhuǎn)盤(pán)的指針指向每個(gè)區(qū)域的字母相同,所購(gòu)買(mǎi)物品享受8折優(yōu)惠,其它情況無(wú)優(yōu)惠.在每個(gè)轉(zhuǎn)盤(pán)中,指針指向每個(gè)區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán))

(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為多少;

(2)若顧客選擇方式二,請(qǐng)用樹(shù)狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E、F分別在BCCD上,下列結(jié)論:CE=CF;②∠AEB=75°;BE+DF=EF;S正方形ABCD=

其中正確的序號(hào)是   (把你認(rèn)為正確的都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形面積為,延長(zhǎng)至點(diǎn),使得,以為邊在正方形另一側(cè)作菱形,其中,依次延長(zhǎng)類(lèi)似以上操作再作三個(gè)形狀大小都相同的菱形,形成風(fēng)車(chē)狀圖形,依次連結(jié)點(diǎn)則四邊形的面積為___________

查看答案和解析>>

同步練習(xí)冊(cè)答案