【題目】如圖,直角梯形 ABCD 中,ADBC,ABBC,AD3BC4.將腰 CD D 為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn) 90°至 DE,連結(jié) AE,則ADE 的面積是(

A.B.2C.D.不能確定

【答案】A

【解析】

EFADAD延長(zhǎng)線于點(diǎn)F,作DGBC于點(diǎn)G,首先利用旋轉(zhuǎn)的性質(zhì)證明△DCG與△DEF全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等可得EF的長(zhǎng),即△ADE的高,即可求出三角形ADE的面積.

解:如圖所示,作EFADAD延長(zhǎng)線于點(diǎn)F,作DGBC于點(diǎn)G,

CDD為中心逆時(shí)針旋轉(zhuǎn)90°至ED,

∴∠EDF+CDF=90°,DE=CD,

又∵∠CDF+CDG=90°,

∴∠CDG=EDF,

∴△DCG≌△DEFAAS),

EF=CG,

AD=3BC=4,

CG=BCAD=43=1,

EF=1,

∴△ADE 的面積是.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面三行數(shù)

3,927,81…

13,927…

2,1026,82…

(1)第①行數(shù)按什么規(guī)律排列?

(2)第②③行數(shù)與第①行數(shù)分別有什么關(guān)系?

(3)設(shè)x,y,z分別為第①②③ 行的2019個(gè)數(shù),求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC,AB=AC=6,BAC=108°,點(diǎn)D在邊BC,BAD=36°.

(1)求證:BAD∽△BCA

(2)AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形一條對(duì)角線所在直線上的點(diǎn),如果到這條對(duì)角線的兩端點(diǎn)的距離不相等,但到另一對(duì)角線的兩個(gè)端點(diǎn)的距離相等,則稱這點(diǎn)為這個(gè)四邊形的準(zhǔn)等距點(diǎn).如圖1,點(diǎn)P為四邊形ABCD對(duì)角線AC所在直線上的一點(diǎn),PDPB,PAPC,則點(diǎn)P為四邊形ABCD的準(zhǔn)等距點(diǎn).

1)如圖2,畫出菱形ABCD的一個(gè)準(zhǔn)等距點(diǎn).

2)如圖3,在四邊形ABCD中,PAC上的點(diǎn),PAPC,延長(zhǎng)BPCD于點(diǎn)E,延長(zhǎng)DPBC于點(diǎn)F,且∠CDF=∠CBE,CECF.求證:點(diǎn)P是四邊形ABCD的準(zhǔn)等距點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABD中,∠ABD=90°,AB=1,sin∠ADB=,點(diǎn)EAD的中點(diǎn),線段BA繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到BC(旋轉(zhuǎn)角小于180°),使BCAD.連接DC,BE

(1)則四邊形BCDE是________,并證明你的結(jié)論;

(2)求線段AB旋轉(zhuǎn)過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】未成年人思想道德建設(shè)越來越受到社會(huì)的關(guān)注.某青少年研究機(jī)構(gòu)隨機(jī)調(diào)查了某校 100名學(xué)生寒假花零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費(fèi)觀.根據(jù)調(diào)查 數(shù)據(jù)制成了如下的頻數(shù)分布表(部分空格未填).

某校 100 名學(xué)生寒假花零花錢數(shù)量的頻數(shù)分布表:

1)完成該頻數(shù)分布表;

2)畫出頻數(shù)分布直方圖.

3)研究認(rèn)為應(yīng)對(duì)消費(fèi) 150 元以上的學(xué) 生提出勤儉節(jié)約的建議.試估計(jì)應(yīng)對(duì)該校1200 學(xué)生中約多少名學(xué)生提出該項(xiàng)建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn)當(dāng)車輛經(jīng)過時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示欄桿寬度忽略不計(jì),其中米,那么適合該地下車庫的車輛限高標(biāo)志牌為

(參考數(shù)據(jù):

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)M(﹣3,m)是一次函數(shù)y=x+1與反比例函數(shù)y=(k≠0)的圖象的一個(gè)交點(diǎn).

(1)求反比例函數(shù)表達(dá)式;

(2)點(diǎn)P是x軸正半軸上的一個(gè)動(dòng)點(diǎn),設(shè)OP=a(a2),過點(diǎn)P作垂直于x軸的直線,分別交一次函數(shù),反比例函數(shù)的圖象于點(diǎn)A,B,過OP的中點(diǎn)Q作x軸的垂線,交反比例函數(shù)的圖象于點(diǎn)C,ABC′與ABC關(guān)于直線AB對(duì)稱.

當(dāng)a=4時(shí),求ABC′的面積;

當(dāng)a的值為   時(shí),AMC與AMC′的面積相等.

查看答案和解析>>

同步練習(xí)冊(cè)答案