【題目】猜想與證明: 如圖,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線上,CE在邊CD上,連接AF,若M為AF的中點(diǎn),連接DM,EM.
(1)試猜想寫出DM與EM的數(shù)量關(guān)系,并證明你的結(jié)論. 拓展與延伸:
(2)若將“猜想與證明”中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則(1)中的結(jié)論是否仍然成立?請(qǐng)直接寫出你的判斷.
【答案】
(1)解:結(jié)論:DM=EM.
理由:如圖1,延長(zhǎng)EM交AD于點(diǎn)H,
∵四邊形ABCD和ECGF是矩形,
∴AD//EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,F(xiàn)M=AM,
在△FME和△AMH中,
,
∴△FME≌△AMH,
∴HM=EM,
在直角△HDE中,HM=EM,
∴DM=HM=EM,
∴DM=EM.
(2)解:成立.(證明方法類似)
【解析】(1)結(jié)論:DM=EM.只要證明△FME≌△AMH,推出HM=EM,在直角△HDE中利用斜邊中線的性質(zhì)即可證明.(2)結(jié)論不變.證明方法類似.
【考點(diǎn)精析】利用矩形的性質(zhì)和正方形的判定方法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等;先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, , , , 和的平分線相交于點(diǎn)E,過(guò)點(diǎn)E作交于點(diǎn)F,那么EF的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料: 如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個(gè)端點(diǎn)P旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓.就是說(shuō),到某個(gè)定點(diǎn)等于定長(zhǎng)的所有點(diǎn)在同一個(gè)圓上,圓心在P(a,b),半徑為r的圓的方程可以寫為:(x﹣a)2+(y﹣b)2=r2 , 如:圓心在P(2,﹣1),半徑為5的圓方程為:(x﹣2)2+(y+1)2=25
(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為;
②以B(﹣1,﹣2)為圓心, 為半徑的圓的方程為 .
(2)根據(jù)以上材料解決下列問(wèn)題: 如圖2,以B(﹣6,0)為圓心的圓與y軸相切于原點(diǎn),C是⊙B上一點(diǎn),連接OC,作BD⊥OC垂足為D,延長(zhǎng)BD交y軸于點(diǎn)E,已知sin∠AOC= .
①連接EC,證明EC是⊙B的切線;
②在BE上是否存在一點(diǎn)P,使PB=PC=PE=PO?若存在,求P點(diǎn)坐標(biāo),并寫出以P為圓心,以PB為半徑的⊙P的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,4),頂點(diǎn)C在x軸的正半軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)頂點(diǎn)B,則反比例函數(shù)的表達(dá)式為( )
A.y=
B.y=
C.y=
D.y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別為-1,0,3,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)MN的長(zhǎng)為 ;
(2)如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是8?若存在,直接寫出x的值;若不存在,請(qǐng)說(shuō)明理由.
(4)如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“囧”(jiǒng)是一個(gè)風(fēng)靡網(wǎng)絡(luò)的流行詞,像一個(gè)人臉郁悶的神情.如圖所示,一張邊長(zhǎng)為8cm的正方形的紙片,剪去兩個(gè)一樣的小直角三角形和一個(gè)長(zhǎng)方形得到一個(gè)“囧”字圖案(陰影部分).設(shè)剪去的小長(zhǎng)方形長(zhǎng)和寬分別為xcm、ycm,剪去的兩個(gè)小直角三角形的兩直角邊長(zhǎng)也分別為xcm、ycm.
(1)用含有x、y的代數(shù)式表示圖中“囧”(陰影部分)的面積.
(2)當(dāng)x=8,y=2時(shí),求此時(shí)“囧”(陰影部分)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)大燒杯中裝有一個(gè)小燒杯,在小燒杯中放入一個(gè)浮子(質(zhì)量非常輕的空心小圓球)后再往小燒杯中注水,水流的速度恒定不變,小燒杯被注滿后水溢出到大燒杯中,浮子始終保持在容器的正中間.用x表示注水時(shí)間,用y表示浮子的高度,則用來(lái)表示y與x之間關(guān)系的選項(xiàng)是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)(﹣ab)3(5a2b﹣4ab2);
(2)(2x﹣1)(4x2+2x+1)
(3)求5x(2x+1)﹣(2x+3)(5x﹣1)的值,其中x=12.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,四邊形ABCD、CEFG均為正方形.
(1)求證:BE=DG.
(2)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.是否仍存在結(jié)論BE=DG,若不存在,請(qǐng)說(shuō)明理由;若存在,給出證明.
(3)如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)G在AD延長(zhǎng)線上.若AE=2ED,∠A=∠F,△EBC的面積為8,則菱形CEFG的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com