【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,EBC的中點(diǎn),AD⊥AE

1)求證:AC2=CD·BC;

2)過EEG⊥AB,并延長(zhǎng)EG至點(diǎn)K,使EK=EB

若點(diǎn)H是點(diǎn)D關(guān)于AC的對(duì)稱點(diǎn),點(diǎn)FAC的中點(diǎn),求證:FH⊥GH

∠B=30°,求證:四邊形AKEC是菱形.

【答案】1)證明過程見解析;(2)證明過程見解析.

【解析】

1)欲證明AC2=CDBC,只需推知△ACD∽△BCA即可;(2連接AH.構(gòu)建直角△AHC,利用直角三角形斜邊上的中線等于斜邊的一半、等腰對(duì)等角以及等量代換得到:∠FHG=∠CAB=90°,即FH⊥GH

利用在直角三角形中,30度角所對(duì)的直角邊等于斜邊的一半直角三角形斜邊上的中線等于斜邊的一半推知四邊形AKEC的四條邊都相等,則四邊形AKEC是菱形.

解:(1∵AC平分∠BCD,∴∠DCA=∠ACB

∵AC⊥ABAD⊥AE,

∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,

∴∠DAC=∠EAB

∵EBC的中點(diǎn), ∴AE=BE,

∴∠EAB=∠ABC,∴∠DAC=∠ABC

∴△ACD∽△BCA,,

=CD·BC

2證明:連接AH∵∠ADC=∠BAC=90°,點(diǎn)H、D關(guān)于AC對(duì)稱,∴AH⊥BC

∵EG⊥AB,AE=BE

點(diǎn)GAB的中點(diǎn),

∴HG=AG∴∠GAH=∠GHA

點(diǎn)FAC的中點(diǎn),

∴AF=FH,∴∠HAF=∠FHA,

∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°

∴FH⊥GH;

②∵EK⊥AB,AC⊥AB, ∴EK∥AC,

∵∠B=30°,∴AC=BC=EB=EC

EK=EB,∴EK=AC

AK=KE=EC=CA,四邊形AKEC是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,經(jīng)過原點(diǎn)O的拋物線(a0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).

(1)求這條拋物線的表達(dá)式;

(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);

(3)如圖2,若點(diǎn)M在這條拋物線上,且MBO=ABO,在(2)的條件下,是否存在點(diǎn)P,使得POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將大小相同的正三角形按如圖所示的規(guī)律拼圖案,其中第①個(gè)圖案中有6個(gè)小三角形和1個(gè)正六邊形;第②個(gè)圖案中有10個(gè)小三角形和2個(gè)正六邊形;第③個(gè)圖案中有14個(gè)小三角形和3個(gè)正六邊形;;按此規(guī)律排列下去,已知一個(gè)小三角形的面積為a,一個(gè)正六邊形的面積為b,則第⑧個(gè)圖案中所有的小三角形和正六邊形的面積之和為____________(結(jié)果用含a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(,1),下列結(jié)論:其中正確的個(gè)數(shù)是( 。

①a0

②b0;

③c0

;

⑤a+b+c0

A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線BCyx軸于點(diǎn)B,點(diǎn)Ax軸正半軸上,OC為△ABC的中線,C的坐標(biāo)為(m,

1)求線段CO的長(zhǎng);

2)點(diǎn)DOC的延長(zhǎng)線上,連接AD,點(diǎn)EAD的中點(diǎn),連接CE,設(shè)點(diǎn)D的橫坐標(biāo)為t,△CDE的面積為S,求St的函數(shù)解析式;

3)在(2)的條件下,點(diǎn)F為射線BC上一點(diǎn),連接DBDF,且∠FDB=∠OBDCE,求此時(shí)S值及點(diǎn)F坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-2x+12分別與y軸,x軸交于A,B兩點(diǎn),點(diǎn)My軸上,以點(diǎn)M為圓心的⊙M與直線AB相切于點(diǎn)D,連接MD.

(1)求證:△ADM∽△AOB.

(2)如果⊙M的半徑為2,請(qǐng)寫出點(diǎn)M的坐標(biāo),并寫出以點(diǎn)為頂點(diǎn),且過點(diǎn)M的拋物線的函數(shù)表達(dá)式.

(3)(2)的條件下,試問在此拋物線上是否存在點(diǎn)P,使以P,AM三點(diǎn)為頂點(diǎn)的三角形與△AOB相似?如果存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)EBC上的一個(gè)動(dòng)點(diǎn),連接DE,交AC于點(diǎn)F

1)如圖①,當(dāng)時(shí),求的值;

2)如圖②,當(dāng)點(diǎn)EBC的中點(diǎn)時(shí),過點(diǎn)FFGBC于點(diǎn)G,求證:CG=BG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2x3x軸的交點(diǎn)為A、D(AD的右側(cè)),與y軸的交點(diǎn)為C.

(1)直接寫出A、D、C三點(diǎn)的坐標(biāo);

(2)若點(diǎn)M在拋物線上,使得MAD的面積與CAD的面積相等,求點(diǎn)M的坐標(biāo);

(3)設(shè)點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為B,在拋物線上是否存在點(diǎn)P,使得以A、B、C、P四點(diǎn)為頂點(diǎn)的四邊形為梯形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)A,B,C都在⊙O上,連接AB,AC,點(diǎn)D,E分別在ACAB上,連接CE并延長(zhǎng)交⊙O于點(diǎn)F,連接BD,BF,∠BDC﹣∠BFC2ABF

1)如圖1,求證:∠ABD2ACF

2)如圖2,CEBD于點(diǎn)G,過點(diǎn)GGMAC于點(diǎn)M,若AMMD,求證:AEGD;

3)如圖3,在(2)的條件下,當(dāng)AEBE87時(shí),連接DE,且∠ADE30°.延長(zhǎng)BD交⊙O于點(diǎn)H,連接AH,AH8,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案