【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC于點F,連接DF,分析下列五個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四邊形CDEF=S△ABF , 其中正確的結(jié)論有( 。
A.5個
B.4個
C.3個
D.2個
【答案】B
【解析】解:過D作DM∥BE交AC于N,
∵四邊形ABCD是矩形,
∴AD∥BC,∠ABC=90°,AD=BC,
∵BE⊥AC于點F,
∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故①正確;
∵AD∥BC,
∴△AEF∽△CBF,
∴,
∵AE=AD=BC,
∴,
∴CF=2AF,故②正確,
∵DE∥BM,BE∥DM,
∴四邊形BMDE是平行四邊形,
∴BM=DE=BC,
∴BM=CM,
∴CN=NF,
∵BE⊥AC于點F,DM∥BE,
∴DN⊥CF,
∴DF=DC,故③正確;
∵tan∠CAD=,
而CD與AD的大小不知道,
∴tan∠CAD的值無法判斷,故④錯誤;
∵△AEF∽△CBF,
∴,
∴S△AEF=S△ABF , S△ABF=S矩形ABCD
∴S△AEF=S矩形ABCD ,
又∵S四邊形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD ,
∴S四邊形CDEF=S△ABF , 故⑤正確;
所以正確的是:①②③⑤.
故選B.
【考點精析】認(rèn)真審題,首先需要了解矩形的性質(zhì)(矩形的四個角都是直角,矩形的對角線相等),還要掌握相似三角形的判定與性質(zhì)(相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位射擊運動員在10次射擊訓(xùn)練中,命中靶的環(huán)數(shù)如圖.
請你根據(jù)圖表,完成下列問題:
(1)
射擊序次 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績/環(huán) | 8 | 10 | 7 | 9 | 10 | 7 | 10 |
(2)求該運動員這10次射擊訓(xùn)練的平均成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O是以AB為直徑的△ABC的外接圓,OD∥BC交⊙O于點D,交AC于點E,連接AD、BD,BD交AC于點F.
(1)求證:BD平分∠ABC;
(2)延長AC到點P,使PF=PB,求證:PB是⊙O的切線;
(3)如果AB=10,cos∠ABC=,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CO⊥AB于O,D在⊙O上,連接BD,CD,延長CD與AB的延長線交于E,F(xiàn)在BE上,且FD=FE.
(1)求證:FD是⊙O的切線;
(2)若AF=8,tan∠BDF=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接正方形,AB=4,PC、PD是⊙O的兩條切線,C、D為切點.
(1)如圖1,求⊙O的半徑;
(2)如圖1,若點E是BC的中點,連接PE,求PE的長度;
(3)如圖2,若點M是BC邊上任意一點(不含B、C),以點M為直角頂點,在BC的上方作∠AMN=90°,交直線CP于點N,求證:AM=MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市團委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學(xué)校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為70分,80分,90分,100分,并根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖表:
乙校成績統(tǒng)計表
分?jǐn)?shù)(分) | 人數(shù)(人) |
70 | 7 |
80 | |
90 | 1 |
100 | 8 |
(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為 ;
(2)請你將圖②補充完整;
(3)求乙校成績的平均分;
(4)經(jīng)計算知S甲2=135,S乙2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自從2012年12月4日中央公布“八項規(guī)定”以來,我市某中學(xué)積極開展“厲行勤儉節(jié)約,反對鋪張浪費”的活動.為此,校學(xué)生會在全校范圍內(nèi)隨機抽取了若干名學(xué)生就某日晚飯浪費飯菜情況進行調(diào)查,調(diào)查內(nèi)容分為四種:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.學(xué)生會根據(jù)統(tǒng)計結(jié)果繪制了如下統(tǒng)計表和統(tǒng)計圖,根據(jù)所提供的信息回答下列問題:
選項 | 頻數(shù) | 頻率 |
A | 30 | M |
B | n | 0.2 |
C | 5 | 0.1 |
D | 5 | 0.1 |
(1)這次被抽查的學(xué)生有多少人?
(2)求表中m,n的值,并補全條形統(tǒng)計圖;
(3)該中學(xué)有學(xué)生2200名,請估計這餐晚飯有剩飯的學(xué)生人數(shù),按平均每人剩10克米飯計算,這餐晚飯將浪費多少千克米飯?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O為△ABC的外接圓,圓心O在AB上. SA'>”不對,理由為:根據(jù)規(guī)則:每一題搶答對得10分,搶答錯扣20分,搶答不到不得分也不扣分.
(1)在圖1中,用尺規(guī)作圖作∠BAC的平分線AD交⊙O于D(保留作圖痕跡,不寫作法與證明);
(2)如圖2,設(shè)∠BAC的平分線AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.①求證:OD⊥BC;②求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC切⊙O于點B,OC平行于弦AD,過點D作DE⊥AB于點E,連結(jié)AC,與DE交于點P.求證:
(1)PE=PD
(2)ACPD=APBC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com