【題目】如圖,在ABCD中,E為BC邊上一點(diǎn),且AB=AE.
(1)求證:△ABC≌△EAD;
(2)若∠B=65°,∠EAC=25°,求∠AED的度數(shù).
【答案】(1)見解析;(2)∠AED=75°.
【解析】
(1)先證明∠B=∠EAD,然后利用SAS可進(jìn)行全等的證明;
(2)先根據(jù)等腰三角形的性質(zhì)可得∠BAE=50°,求出∠BAC的度數(shù),即可得∠AED的度數(shù).
(1)證明:∵在平行四邊形ABCD中,AD∥BC,BC=AD,
∴∠EAD=∠AEB,
又∵AB=AE,
∴∠B=∠AEB,
∴∠B=∠EAD,
在△ABC和△EAD中,
,
∴△ABC≌△EAD(SAS).
(2)解:∵AB=AE,
∴∠B=∠AEB,
∴∠BAE=50°,
∴∠BAC=∠BAE+∠EAC=50°+25°=75°,
∵△ABC≌△EAD,
∴∠AED=∠BAC=75°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,解答下面的問(wèn)題:
我們知道方程有無(wú)數(shù)個(gè)解,但在實(shí)際問(wèn)題中往往只需求出其正整數(shù)解.
例:由,得:( 、為正整數(shù)).要使為正整數(shù),則為正整數(shù),可知: 為3的倍數(shù),從而,代入.所以的正整數(shù)解為.
問(wèn)題:
(1)請(qǐng)你直接寫出方程=8的正整數(shù)解 .
(2)若為自然數(shù),則滿足條件的正整數(shù)的值有( )
A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)
(3)關(guān)于, 的二元一次方程組的解是正整數(shù),求整數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
問(wèn)題情境:如圖1,在△ABC中,AB=AC,點(diǎn)D,E分別是邊AB,AC上的點(diǎn),且AD=AE,連接DE,易知BD=CE.將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角度α(0°<α<360°),連接BD,CE,得到圖2.
(1)變式探究:如圖2,若0°<α<90°,則BD=CE的結(jié)論還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(2)拓展延伸:若圖1中的∠BAC=120°,其余條件不變,請(qǐng)解答下列問(wèn)題:
從A,B兩題中任選一題作答我選擇 題
A.①在圖1中,若AB=10,求BC的長(zhǎng);
②如圖3,在△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的過(guò)程中,當(dāng)DE的延長(zhǎng)線經(jīng)過(guò)點(diǎn)C時(shí),請(qǐng)直接寫出線段AD,BD,CD之間的等量關(guān)系;
B.①在圖1中,試探究BC與AB的數(shù)量關(guān)系,并說(shuō)明理由;
②在△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的過(guò)程中,當(dāng)點(diǎn)D,E,C三點(diǎn)在同一條直線上時(shí),請(qǐng)借助備用圖探究線段AD,BD,CD之間的等量關(guān)系,并直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑為AB,點(diǎn)C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有甲、乙兩個(gè)長(zhǎng)方形,它們的邊長(zhǎng)如圖所示(m為正整數(shù)),面積分別為S1、S2.
(1)請(qǐng)比較S1與S2的大。 S1 S2;
(2)若一個(gè)正方形與甲的周長(zhǎng)相等.
①求該正方形的邊長(zhǎng)(用含m的代數(shù)式表示);
②若該正方形的面積為S3,試探究:S3與S1的差(即S3﹣S1)是否為常數(shù)?若為常數(shù),求出這個(gè)常數(shù);如果不是,請(qǐng)說(shuō)明理由;
(3)若滿足條件0<n<|S1﹣S2|的整數(shù)n有且只有8個(gè),直接寫出m的值并分別求出S1與S2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)出售一批進(jìn)價(jià)為2元的賀卡,在市場(chǎng)營(yíng)銷中發(fā)現(xiàn)此商品的日銷售單價(jià)x(元)與日銷售量y(個(gè))之間有如下關(guān)系:
日銷售單價(jià)x(元) | 3 | 4 | 5 | 6 |
日銷售量y(個(gè)) | 20 | 15 | 12 | 10 |
(1)猜測(cè)并確定y與x之間的函數(shù)關(guān)系式,并畫出圖象;
(2)設(shè)經(jīng)營(yíng)此賀卡的銷售利潤(rùn)為W元,求出W與x之間的函數(shù)關(guān)系式,
(3)若物價(jià)局規(guī)定此賀卡的售價(jià)最高不能超過(guò)10元/個(gè),請(qǐng)你求出當(dāng)日銷售單價(jià)x定為多少時(shí),才能獲得最大日銷售利潤(rùn)?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,請(qǐng)結(jié)合圖,探索這兩個(gè)角之間的關(guān)系,并說(shuō)明理由.
(1)如圖①,AB∥CD,BE∥DF,∠1與∠2的關(guān)系是 ;
證明:
(2)如圖②,AB∥CD,BE∥DF,∠1與∠2的關(guān)系是 ;
證明:
(3)經(jīng)過(guò)上述證明,我們可得出結(jié)論,如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角 ;
(4)若這兩個(gè)角的兩邊分別平行,且一個(gè)角比另一個(gè)角的3倍少60°,則這兩個(gè)角分別是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】是某汽車行駛的路程S(km)與時(shí)間t(min)的函數(shù)關(guān)系圖.觀察圖中所提供的信息,解答下列問(wèn)題:
(1)汽車在前9分鐘內(nèi)的平均速度是多少?
(2)汽車在中途停了多長(zhǎng)時(shí)間?
(3)當(dāng)16≤t≤30時(shí),求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】補(bǔ)全解答過(guò)程:
已知:如圖,直線AB∥CD,直線EF與直線AB、CD分別交于點(diǎn)G、H,GM平分∠FGB,∠3=60°,求∠1的度數(shù)。
解:∵EF與CD交于點(diǎn)H(已知)
∴∠3=∠4(_______________)
∵∠3=60°(已知)
∴∠4=60°(______________)
∵AB∥CD,EF與AB、CD交于點(diǎn)G、H(已知)
∴∠4+∠FGB=180°(______________)
∴∠FGB=______°
∵GM平分∠FGB(已知)
∴∠1=_____°(______________)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com