【題目】如圖,在平面直角坐標(biāo)系中,點O為原點,反比例函數(shù)y=的圖象經(jīng)過點(1,4),菱形OABC的頂點A在函數(shù)的圖象上,對角線OB在x軸上.
(1)求反比例函數(shù)的關(guān)系式;
(2)直接寫出菱形OABC的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種時令商品每件成本為20元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量m(件)與時間t(天)的關(guān)系滿足:m=﹣2t+96.且未來40天內(nèi),前20天每天的價格y1(元/件)與時間t(天)的函數(shù)關(guān)系式為y1=t+25(1≤t≤20且t為整數(shù)),后20天每天的價格y2(元/件)與時間t(天)的函數(shù)關(guān)系式為y2=﹣t+40(21≤t<40且t為整數(shù)).下面我們就來研究銷售這種商品的有關(guān)問題
(1)請分別寫出未來40天內(nèi),前20天和后20天的日銷售利潤w(元)與時間t的函數(shù)關(guān)系式;
(2)請預(yù)測未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC,∠ACB的平分線相交于點F,過點F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論正確的是:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周長為AB+AC;④BD=CE.( )
A. ③④ B. ①② C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD垂直BC于點D,且AD=BC,BC上方有一動點P滿足,則點P到B、C兩點距離之和最小時,∠PBC的度數(shù)為( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明做了一個數(shù)學(xué)實驗:將一個圓柱形的空玻璃杯放入形狀相同的無水魚缸內(nèi),然后,小明對準(zhǔn)玻璃杯口勻速注水,如圖所示,在注水過程中,杯底始終緊貼魚缸底部,則下面可以近似地刻畫出無魚水缸內(nèi)最高水位與注水時間之間的變化情況的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦了一次成語知識競賽,滿分分,學(xué)生得分均為整數(shù),成績達(dá)到分及分以上為合格,達(dá)到分或分為優(yōu)秀.這次競賽中甲、乙兩組學(xué)生成績統(tǒng)計分析表和成績分布的折線統(tǒng)計圖如圖所示
組別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | |||||
乙組 |
(1)求出成績統(tǒng)計分析表中,的值;
(2)小英同學(xué)說:“這次競賽我得了分,在我們小組中排名屬中游略上!”觀察上面表格判斷,小英是甲、乙哪個組的學(xué)生;
(3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組,但乙組同學(xué)不同意甲組同學(xué)的說法,認(rèn)為他們的成績要好于甲組.請你給出兩條支持乙組同學(xué)觀點的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“當(dāng)試驗次數(shù)很大時,用頻率估計概率”的試驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,表格如下,則符合這一結(jié)果的試驗最有可能是( )
次數(shù) | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
頻率 | 0.60 | 0.30 | 0.50 | 0.36 | 0.42 | 0.38 | 0.41 | 0.39 | 0.40 | 0.40 |
A. 擲一個質(zhì)地均勻的骰子,向上的面點數(shù)是“6”
B. 擲一枚一元的硬幣,正面朝上
C. 不透明的袋子里有2個紅球和3個黃球,除顏色外都相同,從中任取一球是紅球
D. 三張撲克牌,分別是3,5,5,背面朝上洗勻后,隨機抽出一張是5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為△ABC三邊的長.
(1)如果x=-1是方程的根,試判斷△ABC的形狀,并說明理由;
(2)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,平行四邊形的頂點的坐標(biāo)分別是, ,點把線段三等分,延長分別交于點,連接, 則下列結(jié)論:; ③四邊形的面積為;④,其中正確的有( ).
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com