【題目】據(jù)統(tǒng)計(jì),某小區(qū)2011年底擁有私家車(chē)125輛,2013年底私家車(chē)的擁有量達(dá)到180輛.

(1)若該小區(qū)2011年底到2014年底私家車(chē)擁有量的年平均增長(zhǎng)率相同,則該小區(qū)到2014年底私家車(chē)將達(dá)到多少輛?

(2)為了緩解停車(chē)矛盾,該小區(qū)決定投資3萬(wàn)元再建若干個(gè)停車(chē)位,據(jù)測(cè)算,建造費(fèi)用分別為室內(nèi)車(chē)位1 000元/個(gè),露天車(chē)位200元/個(gè).考慮到實(shí)際因素,計(jì)劃露天車(chē)位的數(shù)量不少于室內(nèi)車(chē)位的2倍,但不超過(guò)室內(nèi)車(chē)位的2.5倍,則該小區(qū)最多可建兩種車(chē)位各多少個(gè)?試寫(xiě)出所有可能的方案.

【答案】(1)該小區(qū)到2014年底私家車(chē)將達(dá)到216輛.(2)方案一:建室內(nèi)車(chē)位20個(gè),露天車(chē)位50個(gè);方案二:建室內(nèi)車(chē)位21個(gè),露天車(chē)位45個(gè).

【解析】試題分析:(1)設(shè)年平均增長(zhǎng)率是x,根據(jù)某小區(qū)2011年底擁有私家車(chē)125輛,2014年底私家車(chē)的擁有量達(dá)到180輛,可求出增長(zhǎng)率,進(jìn)而可求出到2014年底私家車(chē)將達(dá)到多少輛.

(2)設(shè)建x個(gè)室內(nèi)車(chē)位,根據(jù)投資錢(qián)數(shù)可表示出露天車(chē)位,根據(jù)計(jì)劃露天車(chē)位的數(shù)量不少于室內(nèi)車(chē)位的2倍,但不超過(guò)室內(nèi)車(chē)位的2.5倍,可列出不等式組求解,進(jìn)而可求出方案情況.

試題解析:(1)設(shè)私家車(chē)擁有量的年平均增長(zhǎng)率為x,

則125(1+x)2=180,

解得x1=0.2=20%,x2=-2.2(不合題意,舍去).

故180(1+20%)=216(輛).

答:該小區(qū)到2014年底私家車(chē)將達(dá)到216輛.

(2)設(shè)該小區(qū)可建室內(nèi)車(chē)位a個(gè),露天車(chē)位b個(gè),

由①得b=150-5a,

代入②得20≤a,

因?yàn)?/span>a是正整數(shù),所以a=20或21.

當(dāng)a=20時(shí),b=50;當(dāng)a=21時(shí),b=45.

所以方案一:建室內(nèi)車(chē)位20個(gè),露天車(chē)位50個(gè);

方案二:建室內(nèi)車(chē)位21個(gè),露天車(chē)位45個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形中ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P為四邊形ABCD邊上的任意一點(diǎn),當(dāng)∠BPC=30°時(shí),CP的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一架2.5米長(zhǎng)的梯子,斜靠在一豎直的墻上,這時(shí)梯足到墻底端的距離為0.7,如果梯子的頂端沿墻下滑0.4,那么梯足將向外移多少米?5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一幅長(zhǎng)60 cm、寬40 cm的矩形風(fēng)景畫(huà)的四周鑲一條金色紙邊,制成一幅矩形掛圖,如圖所示,如果要使整個(gè)掛圖的面積是2 816 cm2,設(shè)金色紙邊的寬為x cm,那么x滿足的方程是(  )

A. (60+x)(40+2x)=2 816 B. (60+x)(40+x)=2 816

C. (60+2x)(40+x)=2 816 D. (60+2x)(40+2x)=2 816

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.

求證:AF平分∠BAC.

【答案】證明見(jiàn)解析.

【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC再易證ABF≌△ACF,從而證出AF平分∠BAC

試題解析:證明:∵AB=AC(已知),

∴∠ABC=ACB(等邊對(duì)等角).

BD、CE分別是高,

BDAC,CEAB(高的定義).

∴∠CEB=BDC=90°.

∴∠ECB=90°ABC,DBC=90°ACB.

∴∠ECB=DBC(等量代換).

FB=FC(等角對(duì)等邊)

ABFACF中,

ABFACF(SSS),

∴∠BAF=CAF(全等三角形對(duì)應(yīng)角相等),

AF平分∠BAC.

型】解答
結(jié)束】
23

【題目】如圖,在△ABC中,AC=BC,∠C=90°AD△ABC的角平分線,DE⊥AB,垂足為E

1)求證:CD=BE;

2)已知CD=2,求AC的長(zhǎng);

3)求證:AB=AC+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是(
A.0不能做除數(shù)
B.0沒(méi)有倒數(shù)
C.0除以任何數(shù)都得0
D.0的相反數(shù)是0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】合肥百大集團(tuán)新進(jìn)了40臺(tái)空調(diào)機(jī),60臺(tái)電冰箱,計(jì)劃調(diào)配給下屬的甲、乙兩個(gè)連鎖店銷(xiāo)售,其中70臺(tái)給甲連鎖店,30臺(tái)給乙連鎖店.兩個(gè)連鎖店銷(xiāo)售這兩種電器每臺(tái)的利潤(rùn)(元)如下表:

空調(diào)機(jī)

電冰箱

甲連鎖店

200

170

乙連鎖店

160

150

設(shè)集團(tuán)調(diào)配給甲連鎖店x臺(tái)空調(diào)機(jī),集團(tuán)賣(mài)出這100臺(tái)電器的總利潤(rùn)為y(元).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;

(2)為了促銷(xiāo),集團(tuán)決定僅對(duì)甲連鎖店的空調(diào)機(jī)每臺(tái)讓利a元銷(xiāo)售,其他的銷(xiāo)售利潤(rùn)不變,并且讓利后每臺(tái)空調(diào)機(jī)的利潤(rùn)仍然高于甲連鎖店銷(xiāo)售的每臺(tái)電冰箱的利潤(rùn),問(wèn)該集團(tuán)應(yīng)該如何設(shè)計(jì)調(diào)配方案,才能使總利潤(rùn)達(dá)到最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD是∠BAC的平分線,AE是∠BAC的外角平分線,ED∥AB交AC于點(diǎn)G.下列結(jié)論:①AD⊥AE;②AE∥BC;③AE=AG;④AG=DE.正確的是________.(填序號(hào)) 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠D=∠C=90°EDC的中點(diǎn),AE平分∠DAB∠DEA=28°,則∠ABE的度數(shù)是( )

A. 62° B. 31° C. 28° D. 25°

查看答案和解析>>

同步練習(xí)冊(cè)答案