【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y= (k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo);
(3)求△PAB的面積.

【答案】
(1)解:把點(diǎn)A(1,a)代入一次函數(shù)y=﹣x+4,

得a=﹣1+4,

解得a=3,

∴A(1,3),

點(diǎn)A(1,3)代入反比例函數(shù)y= ,

得k=3,

∴反比例函數(shù)的表達(dá)式y(tǒng)=


(2)解:把B(3,b)代入上式子得,

∴點(diǎn)B坐標(biāo)(3,1);

作點(diǎn)B作關(guān)于x軸的對稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時(shí)PA+PB的值最小,

∴D(3,﹣1),

設(shè)直線AD的解析式為y=mx+n,

把A,D兩點(diǎn)代入得 ,

解得m=﹣2,n=5,

∴直線AD的解析式為y=﹣2x+5

令y=0,得x=

∴點(diǎn)P坐標(biāo)( ,0)


(3)解:SPAB=S△ABD﹣SPBD= ×2×2﹣ ×2× =2﹣ =1.5.
【解析】(1)將A的坐標(biāo)代入一次函數(shù)即可求出a的值,從而求出A的坐標(biāo),將A的坐標(biāo)代入反比例函數(shù)即可求出k的值.(2)作出B關(guān)于x軸的對稱點(diǎn)D,求出點(diǎn)D的坐標(biāo),然后求出直線AD的解析式,令y=0即可求出點(diǎn)P的坐標(biāo).(3)由圖形可知SPAB=SABD﹣SPBD , 從而求出△ABD與△PBD的面積即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB∥CD.∠1=∠2,∠3=∠4,試說明AD∥BE.

解:∵AB∥CD(已知)

∴∠4=∠

∵∠3=∠4(已知)

∴∠3=∠

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(

即∠ =∠

∴∠3=∠

∴AD∥BE(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營A種品牌的玩具,購進(jìn)時(shí)間的單價(jià)是30元,但據(jù)市場調(diào)查,在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x>40),請用含x的代數(shù)式表示該玩具的銷售量;
(2)若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場要完成不少于450件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?
(3)該商場計(jì)劃將(2)中所得的利潤的一部分資金采購一批B種玩具并轉(zhuǎn)手出售,根據(jù)市場調(diào)查并準(zhǔn)備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付他庫保管費(fèi)350元,請問商場如何使用這筆資金,采用哪種方案獲利較多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張先生準(zhǔn)備在沙坪壩購買一套小戶型商品房,他去某樓盤了解情況得知,該戶型商品房的單價(jià)是12000/m2,面積如圖所示(單位:米,臥室的寬為a米,衛(wèi)生間的寬為x米),

(1) 用含ax的式子表示該戶型的面積

(2) 售房部為張先生提供了以下兩種優(yōu)惠方案:

方案一:整套房的單價(jià)是12 000/m2,其中廚房只算的面積;

方案二:整套房按原銷售總金額的9折出售,

若張先生購買的戶型a=3,且分別用兩種方案購房金額相等,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A(0,4),B(﹣3,4),C(﹣6,0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以1個(gè)單位/秒的速度在y軸上向下運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā)以2個(gè)單位/秒的速度在x軸上向右運(yùn)動(dòng),過點(diǎn)P作PD⊥y軸,交OB于D,連接DQ.當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),兩動(dòng)點(diǎn)均停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)t=1時(shí),求線段DP的長;
(2)連接CD,設(shè)△CDQ的面積為S,求S關(guān)于t的函數(shù)解析式,并求出S的最大值;
(3)運(yùn)動(dòng)過程中是否存在某一時(shí)刻,使△ODQ與△ABC相似?若存在,請求出所有滿足要求的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學(xué)生人數(shù)為 , 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中m= , n= , 表示“足球”的扇形的圓心角是度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,AB=AC,C=70°,AB′C′ABC 關(guān)于直線 EF對稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,I是△ABC的內(nèi)心,AI的延長線和△ABC的外接圓相交于點(diǎn)D,連接BI、BD、DC.下列說法中錯(cuò)誤的一項(xiàng)是( 。
A.線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定能與線段DC重合
B.線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定能與線段DI重合
C.∠CAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定能與∠DAB重合
D.線段ID繞點(diǎn)I順時(shí)針旋轉(zhuǎn)一定能與線段IB重合

查看答案和解析>>

同步練習(xí)冊答案