【題目】把分別標有數(shù)字2、34、5的四個小球放入A袋內(nèi),把分別標有數(shù)字的五個小球放入B袋內(nèi),所有小球的形狀、大小、質地完全相同,AB兩個袋子不透明。

1)小明分別從AB兩個袋子中各摸出一個小球,求這兩個小球上的數(shù)字互為倒數(shù)的概率;

2)當B袋中標有的小球上的數(shù)字變?yōu)?/span>   時(填寫所有結果),(1)中的概率為

【答案】解:(1)畫樹狀圖得:

共有20種等可能的結果,這兩個小球上的數(shù)字互為倒數(shù)的有4種情況,

這兩個小球上的數(shù)字互為倒數(shù)的概率為:。

2

【解析】

試題(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與這兩個小球上的數(shù)字互為倒數(shù)的情況,再利用概率公式即可求得答案。

2)由概率為,可得這兩個小球上的數(shù)字互為倒數(shù)的有5種情況,由(1)時這兩個小球上的數(shù)字互為倒數(shù)的有4種情況,故只要把換成A袋內(nèi)23、45四個數(shù)倒數(shù)的任一個即可。故當B袋中標有的小球上的數(shù)字變?yōu)?/span>時,(1)中的概率為。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,正方形OABC的點A軸上,點C軸上,點B4,4),點EBC邊上.將△ABE繞點A 順時針旋轉90°,得△AOF,連接EF軸于點D

)若點E的坐標為(,).求

1)線段EF的長;

2)點D的坐標;

)設點E,),,試用含的式子表示,并求出使取得最大值時點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一位運動員在距籃下4m處跳起投籃,球運行的路線是拋物線,當球運行的水平距離是2.5m時,達到最大高度3.5m,然后準確落入籃圈.已知籃圈中心到地面的距離為3.05m.

(1)建立如圖所示的平面直角坐標系,求拋物線的解析式.

(2)該運動員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,

問:球出手時,他距離地面的高度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCDAB=2,BC=10,點EAD上一點,且AE=AB,點F從點E出發(fā),向終點D運動,速度為1cm/s,以BF為斜邊在BF上方作等腰直角BFG,以BGBF為鄰邊作BFHG,連接AG.設點F的運動時間為t秒.

1)試說明:ABGEBF;

2)當點H落在直線CD上時,求t 的值;

3)點FE運動到D的過程中,直接寫出HC的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC內(nèi)有一點P,過點P作直線lAB,交ACE點.今欲在∠BAC的兩邊上各找一點Q、R,使得PQR的中點,以下是甲、乙兩人的作法:

甲:①過P作直線l1AC,交直線ABF點,并連接EF;

②過P作直線l2EF,分別交兩直線AB、ACQ、R兩點,則Q、R即為所求.

乙:①在直線AC上另取一點R,使得AE=ER;

②作直線PR,交直線ABQ點,則Q、R即為所求.

下列判斷正確的是( 。

A. 兩人皆正確 B. 兩人皆錯誤

C. 甲正確,乙錯誤 D. 甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料,然后解答問題:

在平面直角坐標系中,以任意兩點Px1,y1),Qx2y2)為端點的線段的中點坐標為(,).如圖,在平面直角坐標系xOy中,雙曲線yx0)和yx0)的圖象關于y軸對稱,直線y與兩個圖象分別交于Aa,1),B1,b)兩點,點C為線段AB的中點,連接OCOB

1)求a、b、k的值及點C的坐標;

2)若在坐標平面上有一點D,使得以O、C、B、D為頂點的四邊形是平行四邊形,請求出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,,對角線平分角,點內(nèi)一點,連接、、,若,,,則菱形的面積等于_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,點D,F(xiàn)分別是AC,AB的中點,CEDB,BEDC.

(1)求證:四邊形DBEC是菱形;

(2)若AD=3,DF=1,求四邊形DBEC面積.

查看答案和解析>>

同步練習冊答案