【題目】如圖,∠AOB=60°,點(diǎn)P是∠AOB內(nèi)的定點(diǎn)且OP=,若點(diǎn)M、N分別是射線(xiàn)OA、OB上異于點(diǎn)O的動(dòng)點(diǎn),則△PMN周長(zhǎng)的最小值是( )
A. B. C. 6 D. 3
【答案】D
【解析】作P點(diǎn)分別關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)C、D,連接CD分別交OA、OB于M、N,如圖,利用軸對(duì)稱(chēng)的性質(zhì)得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用兩點(diǎn)之間線(xiàn)段最短判斷此時(shí)△PMN周長(zhǎng)最小,作OH⊥CD于H,則CH=DH,然后利用含30度的直角三角形三邊的關(guān)系計(jì)算出CD即可.
作P點(diǎn)分別關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)C、D,連接CD分別交OA、OB于M、N,如圖,
則MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此時(shí)△PMN周長(zhǎng)最小,
作OH⊥CD于H,則CH=DH,
∵∠OCH=30°,
∴OH=OC=,
CH=OH=,
∴CD=2CH=3.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,,,,點(diǎn)從點(diǎn)出發(fā)沿方向以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿方向以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)、運(yùn)動(dòng)的時(shí)間是秒,過(guò)點(diǎn)作于點(diǎn),連接、.
(1)求證:;
(2)四邊形能夠成為菱形嗎?若能,求出的值;若不能,請(qǐng)說(shuō)明理由;
(3)當(dāng)________時(shí),為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 ,∠E=∠F=90°,∠B=∠C,AC=AB,給出下列結(jié)論:① ∠1=∠2;② BE=CF;③ △ACN≌△ABM;④ CD=DN,其中正確的結(jié)論有( )個(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小剛準(zhǔn)備用一段長(zhǎng) 44 米的籬笆圍成三角形,用于養(yǎng)雞。已知一條邊長(zhǎng) x 米,第二條邊是第一條邊的 3 倍多 6 米。
(1)若能?chē)梢粋(gè)等腰三角形,求三邊長(zhǎng)
(2)若第一邊長(zhǎng)最短,寫(xiě)出 x 的取值范圍 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB =90°,AC = BC =2,AB =,點(diǎn)P是AB邊上的點(diǎn)(異于點(diǎn)A,B),點(diǎn)Q是BC邊上的點(diǎn)(異于點(diǎn)B,C),且∠CPQ =45°.當(dāng)△CPQ是等腰三角形時(shí),CQ的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,AD⊥CD于點(diǎn)D,且AC平分∠DAB,求證:
(1)直線(xiàn)DC是⊙O的切線(xiàn);
(2)AC2=2ADAO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),延長(zhǎng)CE,BA交于點(diǎn)F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時(shí),寫(xiě)出BC與CD的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時(shí)間t的關(guān)系(其中直線(xiàn)段表示烏龜,折線(xiàn)段表示兔子).下列敘述正確的是( )
A. 賽跑中,兔子共休息了50分鐘
B. 烏龜在這次比賽中的平均速度是0.1米/分鐘
C. 兔子比烏龜早到達(dá)終點(diǎn)10分鐘
D. 烏龜追上兔子用了20分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xoy中,拋物線(xiàn)y=a(x+1)(x-9)經(jīng)過(guò)A,B兩點(diǎn),四邊形OABC
矩形,已知點(diǎn)A坐標(biāo)為(0,6)。
(1) 求拋物線(xiàn)解析式;
(2) 點(diǎn)E在線(xiàn)段AC上移動(dòng)(不與C重合),過(guò)點(diǎn)E作EF⊥BE,交x軸于點(diǎn)F.請(qǐng)判斷的值是否變化;若不變,求出它的值;若變化,請(qǐng)說(shuō)明理由。
(3)在(2)的條件下,若E在直線(xiàn)AC上移動(dòng),當(dāng)點(diǎn)E關(guān)于直線(xiàn)BF的對(duì)稱(chēng)點(diǎn)在拋物線(xiàn)對(duì)稱(chēng)軸上時(shí),請(qǐng)求出BE的長(zhǎng)度。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com