【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個圖形有6個小圓,第2個圖形有10個小圓,第3個圖形有16個小圓,第4圖形有24個小圓,,依次規(guī)律,第( 。﹤圖形有76個小圓.

A. 8 B. 9 C. 10 D. 11

【答案】A

【解析】由題意可知第1個圖形有小圓4+2=6;

2個圖形有小圓4+2+4=10;

3個圖形有小圓4+2+4+6=16;

4個圖形有小圓4+2+4+6+8=24;

5個圖形有小圓4+2+4+6+8+10=34;

故第6個圖形有小圓4+2+4+6+8+10+12=46;

n個圖形有小圓4+2+4+6+8+…+2n=nn+1+4

由題意nn+1+4=76解得n=8或﹣9(舍棄)故選A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A22)在雙曲線y1=x0)上,點C在雙曲線y2=x0)上,分別過A、Cx軸作垂線,垂足分別為FE,以A、C為頂點作正方形ABCD,且使點Bx軸上,點Dy軸的正半軸上.

1)求k的值;

2)求證:△BCE≌△ABF;

3)求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中(ABAD),AF平分∠DAB,交CD于點F,DE平分∠ADC,交AB于點E,AFDE交于點O,連接EF

1)求證:四邊形AEFD為菱形;

2)若AD2,AB3,∠DAB60°,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀第①小題的計算方法,再計算第②小題.

–5+–9+17+–3

解:原式=[–5+]+[–9+]+17++[–3+]

=[–5+–9+–3+17]+[+++]

=0+–1

=–1

上述這種方法叫做拆項法.靈活運用加法的交換律、結(jié)合律可使運算簡便.

②仿照上面的方法計算:(﹣2000+(﹣1999+4000+(﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法不正確的是(

A.因為M是線段AB的中點,所以AM=MB=AB

B.在線段AM延長線上取一點B,如果AB=2AM,那么點M是線段AB的中點

C.因為A,MB在同一直線上,且AM=MB,所以M是線段AB的中點

D.因為AM=MB,所以點MAB的中點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙OBC于點D,交AB于點E,過點DDFAB,垂足為F,連接DE.

(1)求證:直線DF與⊙O相切;

(2)求證:BF=EF;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的方格紙中,每個小正方形的邊長為1,每個小正方形的頂點都叫做格點.(請利用網(wǎng)格作圖,畫出的線請用鉛筆描粗描黑)

1)過點CAB的垂線,并標出垂線所過格點E;

2)過點CAB的平行線CF,并標出平行線所過格點F;

3)直線CE與直線CF的位置關(guān)系是   ;

4)連接ACBC,則三角形ABC的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=mx+n與反比例函數(shù)y= ,其中mn<0,m、n均為常數(shù),它們在同一坐標系中的圖象可以是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一條長度為 a 的線段.

1)如圖①,以該線段為直徑畫一個圓,該圓的周長 C1 = ;如圖②,分別以該線段的一半為直 徑畫兩個圓,這兩個圓的周長的和 C2 = (都用含 a 的代數(shù)式表示,結(jié)果保留

2)如圖③,在該線段上任取一點,再分別以兩條小線段為直徑畫兩個圓,這兩個圓的周長的和為 C3 ,探索 C1 C3 的數(shù)量關(guān)系,并說明理由。

3)如圖④,當 a =10 時,以該線段為直徑畫一個大圓,再在大圓內(nèi)畫若干個小圓,這些小圓的直徑都和 大圓的直徑在同一條直線上,且小圓的直徑的和等于大圓的直徑,那么圖中所有圓的周長的和為 (結(jié) 果保留

查看答案和解析>>

同步練習冊答案