【題目】如圖是一種雪球夾的簡(jiǎn)化結(jié)構(gòu)圖,其通過(guò)一個(gè)固定夾體和一個(gè)活動(dòng)夾體的配合巧妙地完成夾雪、投雪的操作,不需人手直接接觸雪,使用方便,深受小朋友的喜愛(ài).當(dāng)雪球夾閉合時(shí),測(cè)得∠AOB30°,OAOB14 cm,則此款雪球夾制作的雪球的直徑AB的長(zhǎng)度為________ cm(結(jié)果保留一位小數(shù).參考數(shù)據(jù):sin15°≈026,cos15°≈097,tan15°≈027)

【答案】7.3

【解析】

根據(jù)OA=OB,可知△AOB是等腰三角形,作OGAB于點(diǎn)G,從而可以得到AG=BG,求出AG的長(zhǎng),從而可以得到AB的長(zhǎng).

解:如圖,過(guò)點(diǎn)OOGAB于點(diǎn)G,

OAOB14 cm,∠AOB30°

∴∠AOG=∠BOG15°,AGBG

AGOA·sin15°14sin15°

AB2AG28sin15°≈28×026728≈7.3 cm. 

故答案為:7.3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;

(2)是否存在點(diǎn)P,使POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和PBC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步促進(jìn)“美麗校園”創(chuàng)建工作,某校團(tuán)委計(jì)劃對(duì)八年級(jí)五個(gè)班的文化建設(shè)進(jìn)行檢查,每天隨機(jī)抽查一個(gè)班級(jí),第一天從五個(gè)班級(jí)隨機(jī)抽取一個(gè)進(jìn)行檢查,第二天從剩余的四個(gè)班級(jí)再隨機(jī)抽取一個(gè)進(jìn)行檢查,第三天從剩余的三個(gè)班級(jí)再隨機(jī)抽取一個(gè)進(jìn)行檢查…,以此類推,直到檢查完五個(gè)班級(jí)為止,且每個(gè)班級(jí)被選中的機(jī)會(huì)均等

(1)第一天,八(1)班沒(méi)有被選中的概率是   ;

(2)利用網(wǎng)狀圖或列表的方法,求前兩天八(1)班被選中的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C、D在線段AB上,PCD是等邊三角形,且CD2ADBC

1)求證:APD∽△PBC;

2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校門(mén)口豎著“前方學(xué)校,減速慢行”的交通指示牌CD,數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)將“測(cè)量交通指示牌CD的高度”作為一項(xiàng)課題活動(dòng),他們定好了如下測(cè)量方案:

項(xiàng)目

內(nèi)容

課題

測(cè)量交通指示牌CD的高度

測(cè)量示意圖

測(cè)量步驟

(1)從交通指示牌下的點(diǎn)M處出發(fā)向前走10 米到達(dá)A處;

(2)在點(diǎn)A處用量角儀測(cè)得∠DAM27°;

(3)從點(diǎn)A沿直線MA向前走10米到達(dá)B處;(4)在點(diǎn)B處用量角儀測(cè)得∠CBA18°.

請(qǐng)你幫助該小組同學(xué)根據(jù)上表中的測(cè)量數(shù)據(jù),求出交通指示牌CD的高度.(參考數(shù)據(jù)sin27°≈0.45cos27°≈0.89,tan27°≈0.51sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了盡快實(shí)施脫貧致富奔小康宏偉意圖,某縣扶貧工作隊(duì)為朝陽(yáng)溝村購(gòu)買了一批蘋(píng)果樹(shù)苗和梨樹(shù)苗,已知一棵蘋(píng)果樹(shù)苗比一棵梨樹(shù)苗貴2元,購(gòu)買蘋(píng)果樹(shù)苗的費(fèi)用和購(gòu)買梨樹(shù)苗的費(fèi)用分別是3500元和2500元.

(1)若兩種樹(shù)苗購(gòu)買的棵數(shù)一樣多,求梨樹(shù)苗的單價(jià);

(2)若兩種樹(shù)苗共購(gòu)買1100棵,且購(gòu)買兩種樹(shù)苗的總費(fèi)用不超過(guò)6000元,根據(jù)(1)中兩種樹(shù)苗的單價(jià),求梨樹(shù)苗至少購(gòu)買多少棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,GCD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連結(jié)CEDF

1)求證:四邊形CEDF為平行四邊形;

2)若AB6cmBC10cm,∠B60°,

當(dāng)AE  cm時(shí),四邊形CEDF是矩形;

當(dāng)AE  cm時(shí),四邊形CEDF是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案