【題目】在正方形ABCD中,點(diǎn)E為BC邊的中點(diǎn),把△ABE沿直線AE折疊,B點(diǎn)落在點(diǎn)B′處,B′B與AE交于點(diǎn)F,連接AB′,DB′,F(xiàn)C.下列結(jié)論:①AB′=AD;②△FCB′為等腰直角三角形;③∠CB′D=135°;④BB′=BC;⑤.其中正確的個(gè)數(shù)為( ).
A. 2 B. 3 C. 4 D. 5
【答案】D
【解析】因?yàn)辄c(diǎn)和點(diǎn)關(guān)于對稱,所以與關(guān)于對稱,根據(jù)圖形對稱的性質(zhì)得:,又因?yàn)樗倪呅?/span>為正方形,所以,故。故①項(xiàng)正確。
因?yàn)辄c(diǎn)和點(diǎn)關(guān)于對稱,所以,,因?yàn)?/span>、分別為、的中點(diǎn),所以是的中位線,所以,所以,即;因?yàn)?/span>,,所以,在和中,,所以,所以,故為等腰直角三角形。故②項(xiàng)正確。
因?yàn)?/span>,所以在四邊形中,,故,又因?yàn)?/span>,所以。故③正確。
因?yàn)?/span>,所以 .又因?yàn)?/span>AB=BC,所以 .故④正確.
, , , , .
故⑤正確.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖山坡上有一根旗桿AB,旗桿底部B點(diǎn)到山腳C點(diǎn)的距離BC為米,斜坡BC的坡度i=1: .小明在山腳的平地F處測量旗桿的高,點(diǎn)C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.
(1)求坡角∠BCD;
(2)求旗桿AB的高度.
(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程x2+2x+m﹣2=0有實(shí)數(shù)根,則m的值可以是__.(寫出一個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明要測量河內(nèi)小島B到河邊公路AD的距離,在點(diǎn)A處測得∠BAD=37°,沿AD方向前進(jìn)150米到達(dá)點(diǎn)C,測得∠BCD=45°. 求小島B到河邊公路AD的距離.
(參考數(shù)據(jù):sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中,正確的是( 。
A.弦是直徑
B.長度相等的兩條弧是等弧
C.三點(diǎn)確定一個(gè)圓
D.三角形的外心不一定在三角形的外部
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了綠化環(huán)境,育英中學(xué)八年級三班同學(xué)都積極參加植樹活動,今年植樹節(jié)時(shí),該班同學(xué)植樹情況的部分?jǐn)?shù)據(jù)如圖所示,請根據(jù)統(tǒng)計(jì)圖信息,回答下列問題:
(1)八年級三班共有多少名同學(xué)?
(2)條形統(tǒng)計(jì)圖中,m= ,n= .
(3)扇形統(tǒng)計(jì)圖中,試計(jì)算植樹2棵的人數(shù)所對應(yīng)的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點(diǎn),且AE=BC,∠1=∠2.
(1)證明:AB=AD+BC;
(2)判斷△CDE的形狀?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:
①經(jīng)過三個(gè)點(diǎn)一定可以作圓;
②等弧所對的圓周角相等;
③三角形的外心到三角形各頂點(diǎn)的距離都相等;
④在同圓中,平分弦的直徑一定垂直于這條弦.
其中正確的有()
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com