【題目】如圖,已知. 求證:CD∥EF.(填空并在后面的括號(hào)中填理由)
證明:∵∠AGD=∠ACB
∴DG∥___________ (__________)
∴∠3=__________ (_____________)
∵∠1=∠2 (___________________)
∴∠3=__________ (___________________)
∴__________∥___________ (__________________)
【答案】CB;同位角相等,兩直線平行;∠1,;兩直線平行,內(nèi)錯(cuò)角相等;已知;∠2;等量代換;CD;EF;同位角相等,兩直線平行.
【解析】根據(jù)平行線的判定首先得出DG∥CB,再利用平行線的性質(zhì)得出∠3=∠2,進(jìn)而得出CD∥EF.
解:證明:∵∠AGD=∠ACB (已知),
∴DG∥CB(同位角相等,兩直線平行),
∴∠3=∠1。▋芍本平行,內(nèi)錯(cuò)角相等),
∵∠1=∠2。ㄒ阎,
∴∠3=∠2(等量代換),
∴CD∥EF(同位角相等,兩直線平行).
“點(diǎn)睛”此題主要考查了平行線的判定與性質(zhì),熟練掌握相關(guān)的定理是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(-2a2) ·(3ab2-5ab3)結(jié)果是( )
A.6a3b2+10a3b3
B.-6a3b2+10a2b3
C.-6a3b2+10a3b3
D.6a3b2-10a3b3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)2, 6, 2, 5, 4,,則這組數(shù)據(jù)的中位數(shù)是( )
A. 2 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖1,在正方形ABCD中,E、F分別是邊AD、DC上的點(diǎn),且AF⊥BE.
(1)求證:AF=BE;
(2)如圖2,在正方形ABCD中,M、N、P、Q分別是邊AB、BC、CD、DA上的點(diǎn),且MP⊥NQ.MP與NQ是否相等?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)多邊形的內(nèi)角和等于它的外角和,則這個(gè)多邊形的邊數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別是(﹣3,0),(0,6),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿x軸正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)C從點(diǎn)B出發(fā),沿射線BO方向以每秒2個(gè)單位的速度運(yùn)動(dòng).以CP,CO為鄰邊構(gòu)造PCOD,在線段OP延長線上取點(diǎn)E,使PE=AO,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)點(diǎn)C運(yùn)動(dòng)到線段OB的中點(diǎn)時(shí),求t的值及點(diǎn)E的坐標(biāo);
(2)當(dāng)點(diǎn)C在線段OB上時(shí),求證:四邊形ADEC為平行四邊形;
(3)在線段PE上取點(diǎn)F,使PF=2,過點(diǎn)F作MN⊥PE,截取FM=,F(xiàn)N=1,且點(diǎn)M,N分別在第一、四象限,在運(yùn)動(dòng)過程中,當(dāng)點(diǎn)M,N中,有一點(diǎn)落在四邊形ADEC的邊上時(shí),直接寫出所有滿足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列面說法:①若-a>-b,則a>b ②若2x>-2y,則x>-y,③若ax>ay,則x>y,④若a-1>b-1,則a>b,其中正確的是(。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com