【題目】四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是直線AD上兩動(dòng)點(diǎn),且AE=DF,CF所在直線與對(duì)角線BD所在直線交于點(diǎn)G,連接AG,直線AG交BE于點(diǎn)H.

(1)如圖1,當(dāng)點(diǎn)E、F在線段AD上時(shí),求證:∠DAG=∠DCG;

(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;

(3)如圖2,在(2)條件下,連接HO,試說(shuō)明HO平分∠BHG.

【答案】(1)證明見(jiàn)解析(2)AG⊥BE(3)證明見(jiàn)解析

【解析】

(1)根據(jù)正方形的性質(zhì)得DA=DC,ADB=CDB=45°,則可根據(jù)“SAS”證明ADG≌△CDG,所以∠DAG=DCG;

(2)根據(jù)正方形的性質(zhì)得AB=DC,BAD=CDA=90°,根據(jù)“SAS”證明ABE≌△DCF,則∠ABE=DCF,由于∠DAG=DCG,所以∠DAG=ABE,然后利用∠DAG+BAG=90°得到∠ABE+BAG=90°,于是可判斷AGBE;

(3)如答圖1所示,過(guò)點(diǎn)OOMBE于點(diǎn)M,ONAG于點(diǎn)N,證明AON≌△BOM,可得四邊形OMHN為正方形,因此HO平分∠BHG結(jié)論成立.

(1)證明:∵四邊形ABCD為正方形,

DA=DC,ADB=CDB=45°,

ADGCDG中,

,

∴△ADG≌△CDG(SAS),

∴∠DAG=DCG;

(2)解:AGBE.理由如下:

∵四邊形ABCD為正方形,

AB=DC,BAD=CDA=90°,

ABEDCF中,

,

∴△ABE≌△DCF(SAS),

∴∠ABE=DCF,

∵∠DAG=DCG,

∴∠DAG=ABE,

∵∠DAG+BAG=90°,

∴∠ABE+BAG=90°,

∴∠AHB=90°,

AGBE;

(3)解:由(2)可知AGBE.

如答圖1所示,過(guò)點(diǎn)OOMBE于點(diǎn)M,ONAG于點(diǎn)N,則四邊形OMHN為矩形.

∴∠MON=90°,

又∵OAOB,

∴∠AON=BOM.

∵∠AON+OAN=90°,BOM+OBM=90°

∴∠OAN=OBM.

AONBOM中,

,

∴△AON≌△BOM(AAS).

OM=ON,

∴矩形OMHN為正方形,

HO平分∠BHG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=∠C,AB=10 cm,BC=8 cm,D為AB的中點(diǎn),點(diǎn)P在線段上以3 cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以相同速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),一個(gè)點(diǎn)到達(dá)終點(diǎn)后另一個(gè)點(diǎn)也停止運(yùn)動(dòng).當(dāng)△BPD與△CQP全等時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中放置一菱形OABC,已知ABC=60°,OA=1.現(xiàn)將菱形OABC沿x軸的正方向無(wú)滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2018次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,B4,…,則B2018的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知xy、z為有理數(shù),且|x+y+z+1|=x+yz﹣2,則=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD對(duì)角線交于點(diǎn)O,BE∥AC,AE∥BD,EO與AB交于點(diǎn)F.

(1)試判斷四邊形AEBO的形狀,并說(shuō)明你的理由;

(2)求證:EO=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條筆直的公路上有A,B,C三地,C地位于A,B兩地之間,甲,乙兩車分別從A,B兩地出發(fā),沿這條公路勻速行駛至C地停止.從甲車出發(fā)至甲車到達(dá)C地的過(guò)程,甲、乙兩車各自與C地的距離y(km)與甲車行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖表示,當(dāng)甲車出發(fā)h時(shí),兩車相距350km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校開(kāi)展“經(jīng)典誦讀”比賽活動(dòng),誦讀材料有《論語(yǔ)》,《三字經(jīng)》,《弟子規(guī)》(分別用字母A,B,C依次表示這三個(gè)誦讀材料),將A,B,C這三個(gè)字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗勻后放在桌面上.小明和小亮參加誦讀比賽,比賽時(shí)小明先從中隨機(jī)抽取一張卡片,記錄下卡片上的內(nèi)容,放回后洗勻,再由小亮從中隨機(jī)抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進(jìn)行誦讀比賽.
(1)小明誦讀《論語(yǔ)》的概率是;
(2)請(qǐng)用列表法或畫樹(shù)狀圖(樹(shù)形圖)法求小明和小亮誦讀兩個(gè)不同材料的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的66網(wǎng)格中,A,B,C是格點(diǎn)(我們把組成網(wǎng)格的小正方形的頂點(diǎn),稱為格點(diǎn)),其中點(diǎn)C在直線AB外。

(1)過(guò)A點(diǎn)畫AB的垂線AG;

(2)過(guò)C點(diǎn)畫AB的平行線CH;

(3)連接BC,線段BC與線段AB的關(guān)系:______________;

(4)_____________________是點(diǎn)C到直線AB的距離;

(5)因?yàn)橹本外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,垂線段最短,所以線段AC,BC的大小關(guān)系是______________(用“<”號(hào)連接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)圖1是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中虛線剪開(kāi)分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.

圖2的陰影部分的正方形的邊長(zhǎng)是______.

用兩種不同的方法求圖中陰影部分的面積.

(方法1)= ____________;

(方法2)= ____________

(3) 觀察圖2,寫出(a+b)2,(a-b)2,ab這三個(gè)代數(shù)式之間的等量關(guān)系;

根據(jù)題中的等量關(guān)系,解決問(wèn)題:若m+n=10,m-n=6,求mn的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案