【題目】數(shù)學(xué)活動課上,老師準(zhǔn)備了若干個如圖1的三種紙片,種紙片邊長為的正方形,中紙片是邊長為的正方形,種紙片是長為、寬為的長方形.并用種紙片一張,種紙片一張,種紙片兩張拼成如圖2的大正方形.
(1)請問兩種不同的方法求圖2大正方形的面積.
方法1:____________________;方法2:________________________;
(2)觀察圖2,請你寫出下列三個代數(shù)式:之間的等量關(guān)系.
_______________________________________________________;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:,求的值;
②已知,則的值是____.
【答案】(1),;(2);(3)①,②
【解析】
(1)依據(jù)正方形的面積計算公式即可得到結(jié)論;
(2)依據(jù)(1)中的代數(shù)式,即可得出(a+b)2,a2+b2,ab之間的等量關(guān)系;
(3)①依據(jù)a+b=5,可得(a+b)2=25,進而得出a2+b2+2ab=25,再根據(jù)a2+b2=11,即可得到ab=7;②設(shè)2020-a=x,a-2019=y,即可得到x+y=1,x2+y2=5,依據(jù)(x+y)2=x2+2xy+y2,即可得出xy==,進而得到=.
解:(1)圖2大正方形的面積=,圖2大正方形的面積=
故答案為:,;
(2)由題可得,,之間的等量關(guān)系為:故答案為:;
(3)①
②設(shè)2020-a=x,a-2019=y,則x+y=1,
∵,
∴x2+y2=5,
∵(x+y)2=x2+2xy+y2,
∴xy==-2,
即.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,、,且、滿足
(1)求、兩點的坐標(biāo);
(2)過點的直線上有一點,連接、, ,如圖2,當(dāng)點在第二象限時,交軸于點,延長交軸于點,設(shè)的長為,的長為,用含的式子表示;
(3)在(2)的條件下,如圖3,當(dāng)點在第一象限時,過點作交于點,連接,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為( )
A. 50m B. 25m C. (50﹣)m D. (50﹣25)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:
①拋物線過原點;②a﹣b+c<0;③當(dāng)x<1時,y隨x增大而增大;
④拋物線的頂點坐標(biāo)為(2,b);⑤若ax2+bx+c=b,則b2﹣4ac=0.
其中正確的是( )
A. ①②③ B. ①④⑤ C. ①②④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥DA于Q.
(1)求∠BPQ的度數(shù);
(2)若PQ=3,EP=1,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解居民的環(huán)保意識,社區(qū)工作人員在某小區(qū)隨機抽取了若干名居民開展有獎問卷調(diào)查活動,并用得到的數(shù)據(jù)繪制了如下條形統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題.
(1)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù);
(2)如果對該小區(qū)的800名居民全面開展這項有獎問卷活動,得10分者設(shè)為一等獎,請你根據(jù)調(diào)查結(jié)果,估計需準(zhǔn)備多少份一等獎獎品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為5,由直徑AB的端點B作⊙O的切線,從圓周上一點P引該切線的垂線PM,M為垂足,連接PA,設(shè)PA=x,則AP+2PM的函數(shù)表達(dá)式為______,此函數(shù)的最大值是____,最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊員的10次射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計圖.
并整理分析數(shù)據(jù)如下表:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | 7 | 7 | 1.2 | |
乙 | 7 | 8 |
(1)求,,的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,FA⊥AE,交CB延長線于點F,則EF的長為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com