【題目】如圖,一漁船由西往東航行,在A點(diǎn)測得海島C位于北偏東60°的方向,前進(jìn)30海里到達(dá)B點(diǎn),此時(shí),測得海島C位于北偏東30°的方向,求海島C到航線AB的距離CD的長(結(jié)果保留根號).

【答案】海里

【解析】

根據(jù)方向角的定義及余角的性質(zhì)求出∠CAD=30°,∠CBD=60°,再由三角形外角的性質(zhì)得到∠CAD=30°=∠ACB,根據(jù)等角對等邊得出AB=BC=30,然后解Rt△BCD,求出CD即可.

解:∵DA⊥AD∠DAC=60°,

∴∠1=30°

∵EB⊥AD,∠EBC=30°,

∴∠2=60°

∴∠ACB=30°

∴BC = AB=30

Rt△ACD中,

∵∠CDB=90°,∠2=60°

∴tan∠2=,

∴tan60°=

∴CD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2)、B(4,0)、C(4,﹣4).
①請畫出△ABC向左平移6個(gè)單位長度后得到的△A1B1C1;
②以點(diǎn)O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】趙爽弦圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,若這四個(gè)全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個(gè)陰影小正方形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,∠221,點(diǎn)Cx軸正半軸上的一動點(diǎn).

1)求∠1的度數(shù);

2)若OFAC,OEAB,求證:∠EOF=∠EAF

3)點(diǎn)C在運(yùn)動中,若∠1=∠ACO,試判斷ABAC有怎樣的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)小組同時(shí)從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米,第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達(dá)乙地.設(shè)第二組的步行速度為x千米/小時(shí),根據(jù)題意可列方程是( )
A. =15
B. =
C. =15
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.

求證:AF平分∠BAC.

【答案】證明見解析.

【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC,再易證ABF≌△ACF,從而證出AF平分∠BAC

試題解析:證明:∵AB=AC(已知),

∴∠ABC=ACB(等邊對等角).

BD、CE分別是高,

BDAC,CEAB(高的定義).

∴∠CEB=BDC=90°.

∴∠ECB=90°ABC,DBC=90°ACB.

∴∠ECB=DBC(等量代換).

FB=FC(等角對等邊)

ABFACF中,

,

ABFACF(SSS),

∴∠BAF=CAF(全等三角形對應(yīng)角相等),

AF平分∠BAC.

型】解答
結(jié)束】
23

【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD△ABC的角平分線,DE⊥AB,垂足為E

1)求證:CD=BE;

2)已知CD=2,求AC的長;

3)求證:AB=AC+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別為AB、AC邊上的點(diǎn),DE∥BC,點(diǎn)F為BC邊上一點(diǎn),連接AF交DE于點(diǎn)G,則下列結(jié)論中一定正確的是(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:

(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[探究]如圖,∠AFH和∠CHF的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與ABCD交于點(diǎn)E、G.

(1)若∠AFH=60°,∠CHF=50°,則∠EOF= °,∠ FOH= °

(2)若∠AFH+CHF= 100°,求∠FOH的度數(shù).

(3)當(dāng)∠FOH=_____ °時(shí) ,AB//CD.

[拓展]如圖,∠AFH和∠CHI的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB,CD交于點(diǎn)EG.若∠AFH+CHF=a,求∠FOH的度數(shù). (用含a的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊答案