【題目】化簡:(2x-y)2 + (x+y)(x-y).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1:與C2:為“友好拋物線”.
(1)求拋物線C2的解析式.
(2)點(diǎn)A是拋物線C2上在第一象限的動(dòng)點(diǎn),過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問在C2的對(duì)稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得到線段MB′,且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自主學(xué)習(xí),請(qǐng)閱讀下列解題過程.
解一元二次不等式:>0.
解:設(shè)=0,解得:=0,=5,則拋物線y=與x軸的交點(diǎn)坐標(biāo)為(0,0)和(5,0).畫出二次函數(shù)y=的大致圖象(如圖所示),由圖象可知:當(dāng)x<0,或x>5時(shí)函數(shù)圖象位于x軸上方,此時(shí)y>0,即>0,所以,一元二次不等式>0的解集為:x<0或x>5.
通過對(duì)上述解題過程的學(xué)習(xí),按其解題的思路和方法解答下列問題:
(1)上述解題過程中,滲透了下列數(shù)學(xué)思想中的 和 .(只填序號(hào))
①轉(zhuǎn)化思想 ②分類討論思想 ③數(shù)形結(jié)合思想
(2)一元二次不等式<0的解集為 .
(3)用類似的方法解一元二次不等式:>0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某一次函數(shù)的圖象與直線y=﹣x+1平行,且過點(diǎn)(8,2),那么此一次函數(shù)為( 。
A. y=﹣x﹣2 B. y=﹣x+10 C. y=﹣x﹣6 D. y=﹣x﹣10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮和哥哥在離家2千米的同一所學(xué)校上學(xué),哥哥以4千米/時(shí)的速度步行去學(xué)校,小亮因找不到書籍耽誤了15分鐘,而后騎自行車以12千米/時(shí)的速度去追哥哥.
(1)到校前小亮能追上哥哥嗎?
(2)如果小亮追上哥哥,此時(shí)離學(xué)校有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,多邊形的各頂點(diǎn)都在方格紙的格點(diǎn)(橫豎格子線的交錯(cuò)點(diǎn))上,這樣的多邊形稱為格點(diǎn)多邊形,它的面積S可用公式(a是多邊形內(nèi)的格點(diǎn)數(shù),b是多邊形邊界上的格點(diǎn)數(shù))計(jì)算,這個(gè)公式稱為“皮克定理”.現(xiàn)用一張方格紙共有200個(gè)格點(diǎn),畫有一個(gè)格點(diǎn)多邊形,它的面積S=40.
(1)這個(gè)格點(diǎn)多邊形邊界上的格點(diǎn)數(shù)b= (用含a的代數(shù)式表示).
(2)設(shè)該格點(diǎn)多邊形外的格點(diǎn)數(shù)為c,則c﹣a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D、E在AB上,且D、E分別是AC、BC的垂直平分線上一點(diǎn).
(1)若△CDE的周長為4,求AB的長;
(2)若∠ACB=100°,求∠DCE的度數(shù);
(3)若∠ACB=a(90°<a<180°),則∠DCE=。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com