【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購(gòu)買(mǎi)一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購(gòu)買(mǎi)十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購(gòu)買(mǎi)隊(duì)服超過(guò)80套,則購(gòu)買(mǎi)足球打八折.
(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?
(2)若城區(qū)四校聯(lián)合購(gòu)買(mǎi)100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購(gòu)買(mǎi)裝備所花的費(fèi)用;
(3)假如你是本次購(gòu)買(mǎi)任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購(gòu)買(mǎi)比較合算?

【答案】
(1)解:設(shè)每個(gè)足球的定價(jià)是x元,則每套隊(duì)服是(x+50)元,根據(jù)題意得
2(x+50)=3x,
解得x=100,
x+50=150.
答:每套隊(duì)服150元,每個(gè)足球100元
(2)解:到甲商場(chǎng)購(gòu)買(mǎi)所花的費(fèi)用為:150×100+100(a﹣ )=100a+14000(元),
到乙商場(chǎng)購(gòu)買(mǎi)所花的費(fèi)用為:150×100+0.8×100a=80a+15000(元)
(3)解:當(dāng)在兩家商場(chǎng)購(gòu)買(mǎi)一樣合算時(shí),100a+14000=80a+15000,
解得a=50.
所以購(gòu)買(mǎi)的足球數(shù)等于50個(gè)時(shí),則在兩家商場(chǎng)購(gòu)買(mǎi)一樣合算;
購(gòu)買(mǎi)的足球數(shù)多于50個(gè)時(shí),則到乙商場(chǎng)購(gòu)買(mǎi)合算;
購(gòu)買(mǎi)的足球數(shù)少于50個(gè)時(shí),則到甲商場(chǎng)購(gòu)買(mǎi)合算
【解析】(1)根據(jù)兩套隊(duì)服與三個(gè)足球的費(fèi)用相等列一元一次方程求解;(2)根據(jù)甲商場(chǎng)優(yōu)惠方案和乙商場(chǎng)優(yōu)惠方案可列出代數(shù)式;(3)根據(jù)在兩家商場(chǎng)購(gòu)買(mǎi)一樣合算,列出一元一次方程求解。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:
(1)5(x+8)=6(2x﹣7)+5;
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D在雙曲線(xiàn)上,AD垂直軸,垂足為

A,點(diǎn)CAD上,CB平行于軸交雙曲線(xiàn)于點(diǎn)B,直線(xiàn)AB軸交于點(diǎn)F,已知AC

AD=13,點(diǎn)C的坐標(biāo)為(2,2)。

1)求該雙曲線(xiàn)的解析式;

2)求△OFA的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同學(xué)們,我們?cè)?jīng)研究過(guò)的正方形網(wǎng)格,得到了網(wǎng)格中正方形的總數(shù)的表達(dá)式為12+22+32+…+n2.但n為100時(shí),應(yīng)如何計(jì)算正方形的具體個(gè)數(shù)呢?下面我們就一起來(lái)探究并解決這個(gè)問(wèn)題.首先,通過(guò)探究我們已經(jīng)知道: 時(shí),我們可以這樣做:

(1)觀察并猜想:

;

=

=;

=

= ( );…

(2)歸納結(jié)論:

=

=( )+[ ]

= +

= .

(3)實(shí)踐應(yīng)用:

通過(guò)以上探究過(guò)程,我們就可以算出當(dāng)n為100時(shí),正方形網(wǎng)格中正方形的總個(gè)數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)裝有進(jìn)水管和出水管的容器,從某時(shí)刻開(kāi)始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,接著關(guān)閉進(jìn)水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進(jìn)水量和出水量是兩個(gè)常數(shù),容器內(nèi)的水量y(單位:升)與時(shí)間x(單位:分鐘)之間的部分關(guān)系如圖象所示.求從關(guān)閉進(jìn)水管起需要多少分鐘該容器內(nèi)的水恰好放完.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形 中, ,點(diǎn) 邊上一點(diǎn),過(guò)點(diǎn) ,交射線(xiàn) 于點(diǎn) ,交射線(xiàn) 于點(diǎn)

(1)如圖1,若 ,則 度;
(2)當(dāng)以 , 為頂點(diǎn)的三角形是等邊三角形時(shí),依題意在圖2中補(bǔ)全圖形并求 的長(zhǎng);
(3)過(guò)點(diǎn) 交射線(xiàn) 于點(diǎn) ,請(qǐng)?zhí)骄浚寒?dāng) 為何值時(shí),以 , , 為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、F、B、C是半圓O上的四個(gè)點(diǎn),四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點(diǎn)E,過(guò)點(diǎn)C作CD∥OF交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,延長(zhǎng)AF交直線(xiàn)CD于點(diǎn)H.

(1)求證:CD是半圓O的切線(xiàn);

(2)若DH=,求EF的長(zhǎng)和半徑OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)如圖①,∠AOB=60°,OD平分∠BOC,OE平分∠AOC,則∠EOD=度;

(2)若∠AOB=90°,其它條件不變,則∠EOD=;
(3)若∠AOB=α,其它條件不變,則∠EOD=
(4)類(lèi)比應(yīng)用:如圖②,已知線(xiàn)段AB,C是線(xiàn)段AB上任一點(diǎn),D、E分別是AC、CB的中點(diǎn),試猜想DE與AB的數(shù)量關(guān)系為 , 并寫(xiě)出求解過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某課外小組為了解本校2014-2015學(xué)年八年級(jí)700名學(xué)生每學(xué)期參加社會(huì)實(shí)踐活動(dòng)的時(shí)間,隨機(jī)對(duì)該年級(jí)50名學(xué)生進(jìn)行了調(diào)查,根據(jù)收集的數(shù)據(jù)繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖(各組數(shù)據(jù)包括最小值,不包括最大值).
(1)補(bǔ)全下面的頻數(shù)分布表和頻數(shù)分布直方圖:

(2)可以估計(jì)這所學(xué)校2014-2015學(xué)年八年級(jí)的學(xué)生中,每學(xué)期參加社會(huì)實(shí)踐活動(dòng)的時(shí)間不少于8小時(shí)的學(xué)生大約有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案