【題目】(1)如圖矩形的對(duì)角線(xiàn)、交于點(diǎn),過(guò)點(diǎn)作,且,連接,判斷四邊形的形狀并說(shuō)明理由.
(2)如果題目中的矩形變?yōu)榱庑,結(jié)論應(yīng)變?yōu)槭裁?說(shuō)明理由.
(3)如果題目中的矩形變?yōu)檎叫,結(jié)論又應(yīng)變?yōu)槭裁矗空f(shuō)明理由.
【答案】(1)四邊形的形狀是菱形,理由見(jiàn)解析;(2)四邊形的形狀是矩形,理由見(jiàn)解析;(3)四邊形的形狀是正方形,理由見(jiàn)解析.
【解析】
(1)根據(jù)矩形的性質(zhì)證得,再由有一組對(duì)邊平行且相等的四邊形是平行四邊形證得四邊形CODP是平行四邊形,根據(jù)有一組鄰邊相等的平行四邊形為菱形即可證得結(jié)論;(2)根據(jù)菱形的性質(zhì)可得∠DOC=90°,再由有一組對(duì)邊平行且相等的四邊形是平行四邊形證得四邊形CODP是平行四邊形,根據(jù)有一個(gè)角為直角的平行四邊形為矩形即可證得結(jié)論;(3)根據(jù)正方形的性質(zhì)可得OD=OC,∠DOC=90°,再由有一組對(duì)邊平行且相等的四邊形是平行四邊形得出四邊形CODP是平行四邊形,根據(jù)正方形的判定即可證得結(jié)論.
(1)四邊形的形狀是菱形,
理由是:∵四邊形是矩形,
∴,,,
∴,
∵,,
∴四邊形是平行四邊形,
∵,
∴平行四邊形是菱形;
(2)四邊形的形狀是矩形,
理由是:∵四邊形是菱形,
∴,
∴,
∵,,
∴四邊形是平行四邊形,
∵,
∴平行四邊形是矩形;
(3)四邊形的形狀是正方形,
理由是:∵四邊形是正方形,
∴,,,,
∴,,
∵,,
∴四邊形是平行四邊形,
∵,
∴平行四邊形是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在BC邊上,DE垂直平分AC邊,垂足為點(diǎn)E,若∠B=70°,且AB+BD=BC,則∠BAC的度數(shù)是( )
A.65°B.70°C.75°D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),過(guò)作直線(xiàn),設(shè)交的平分線(xiàn)于點(diǎn),交的外角平分線(xiàn)于點(diǎn).
探究:線(xiàn)段與的數(shù)量關(guān)系并加以證明;
當(dāng)點(diǎn)運(yùn)動(dòng)到何處,且滿(mǎn)足什么條件時(shí),四邊形是正方形?
當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),四邊形會(huì)是菱形嗎?若是,請(qǐng)證明,若不是,則說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尺規(guī)作圖與說(shuō)理(要求保留作圖痕跡,不寫(xiě)作法.)如圖,在Rt△ABC中,∠ACB=90°
(1)過(guò)點(diǎn)C作AB的垂線(xiàn)CD,交AB于點(diǎn)D;
(2)作∠ABC的平分線(xiàn)BE交AC于點(diǎn)E,交CD于點(diǎn)F;
(3)觀察線(xiàn)段CE與CF有何數(shù)量關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題解決)
(1)如圖①,在等邊△ABC中,點(diǎn)M是BC邊上的任意一點(diǎn)(不含端點(diǎn)B,C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.試判斷∠ABC與∠ACN的大小關(guān)系.并說(shuō)明理由.
(類(lèi)比探究)
(2)如圖②在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線(xiàn)上的任意一點(diǎn)(不含端點(diǎn)C),其他條件不變,(1)中結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(拓展延伸)
(3)若點(diǎn)M是CB延長(zhǎng)線(xiàn)上的任意一點(diǎn)(不含端點(diǎn)B),請(qǐng)直接寫(xiě)出∠ACN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以正方形的四條邊為邊,向其內(nèi)部作等邊三角形,得到、、、,連接、、、,若,則四邊形的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線(xiàn)//BC,分別交,外角的平分線(xiàn)于點(diǎn)E、F.
(1)猜想與證明,試猜想線(xiàn)段OE與OF的數(shù)量關(guān)系,并說(shuō)明理由.
(2)連接AE,AF,問(wèn):當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.
(3)若AC邊上存在一點(diǎn)O,使四邊形AECF是正方形,猜想的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,沿AE折疊矩形,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,已知AB=8cm,BC=10cm,求EC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com