精英家教網 > 初中數學 > 題目詳情
(2002•哈爾濱)兩圓外離,圓心距為25cm,兩圓周長分別為15πcm和10πcm.則其內公切線和連心線所夾的銳角等于    度.
【答案】分析:根據兩圓周長可得兩圓的半徑,進而利用連心線與一條內公切線及兩個圓的半徑組成的兩三角形相似,得到大圓圓心到內公切線和連心線的交點的距離,即可求得所求夾角的正弦值,也就求得了所夾銳角的度數.
解答:解:∵兩圓周長分別為15πcm和10πcm,
∴兩圓的半徑分別為cm,5cm.
易得連心線與一條內公切線及兩個圓的半徑組成的兩三角形相似,
∴大圓圓心到內公切線和連心線的交點的距離:(25-大圓圓心到內公切線和連心線的交點的距離)=:5,
解得:大圓圓心到內公切線和連心線的交點的距離為15cm,
∴所求夾角的正弦值為::15=,
∴所求夾角為30°
點評:解決本題的關鍵是得到所求角的相應的三角函數值,難點是利用相似得到大圓圓心到內公切線和連心線的交點的距離.
練習冊系列答案
相關習題

科目:初中數學 來源:2002年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2002•哈爾濱)如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數關系式及自變量t的取值范圍;
(3)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2002年全國中考數學試題匯編《反比例函數》(01)(解析版) 題型:選擇題

(2002•哈爾濱)已知y與x成反比例,當x=3時,y=4,那么當y=3時,x的值等于( )
A.4
B.-4
C.3
D.-3

查看答案和解析>>

科目:初中數學 來源:2010年中考數學模擬卷(1)(解析版) 題型:解答題

(2002•哈爾濱)如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數關系式及自變量t的取值范圍;
(3)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2002年黑龍江省哈爾濱市中考數學試卷(解析版) 題型:解答題

(2002•哈爾濱)如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數關系式及自變量t的取值范圍;
(3)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2002年黑龍江省哈爾濱市中考數學試卷(解析版) 題型:選擇題

(2002•哈爾濱)已知y與x成反比例,當x=3時,y=4,那么當y=3時,x的值等于( )
A.4
B.-4
C.3
D.-3

查看答案和解析>>

同步練習冊答案