【題目】為響應(yīng)國家的“節(jié)能減排”政策,某廠家開發(fā)了一種新型的電動(dòng)車,如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T,大燈照亮地面的寬度BC的長為m.

1)求BT的長(不考慮其他因素).

(2)一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車動(dòng)作的反應(yīng)時(shí)間是0.2s,從發(fā)現(xiàn)危險(xiǎn)到電動(dòng)車完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車,從做出剎車動(dòng)作到電動(dòng)車停止的剎車距離是,請判斷該車大燈的設(shè)計(jì)是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計(jì)),并說明理由.

(參考數(shù)據(jù):sin22°,tan22°,sin31°,tan31°

【答案】該車大燈的設(shè)計(jì)不能滿足最小安全距離的要求,理由詳見解析.

【解析】試題分析:1)在直角中,根據(jù)三角函數(shù)的定義,若 中利用三角函數(shù)即可列方程求解;
2)求出正常人作出反應(yīng)過程中電動(dòng)車行駛的路程,加上剎車距離,然后與的長進(jìn)行比較即可.

試題解析:

1)根據(jù)題意及圖知:

中,

可設(shè)

中,

,

即: ,

解得: ,

;

,

,

∴該車大燈的設(shè)計(jì)不能滿足最小安全距離的要求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),以P11)為圓心的⊙Px軸、y軸分別相切于點(diǎn)M和點(diǎn)N,點(diǎn)F從點(diǎn)M出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),連接PF,過點(diǎn)PPE⊥PFy軸于點(diǎn)E,設(shè)點(diǎn)F運(yùn)動(dòng)的時(shí)間是t秒(t0

1)若點(diǎn)Ey軸的負(fù)半軸上(如圖所示),求證:PE=PF;

2)在點(diǎn)F運(yùn)動(dòng)過程中,設(shè)OE=a,OF=b,試用含a的代數(shù)式表示b;

3)作點(diǎn)F關(guān)于點(diǎn)M的對稱點(diǎn)F′,經(jīng)過M、EF′三點(diǎn)的拋物線的對稱軸交x軸于點(diǎn)Q,連接QE.在點(diǎn)F運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使得以點(diǎn)Q、O、E為頂點(diǎn)的三角形與以點(diǎn)P、M、F為頂點(diǎn)的三角形相似?若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥FC,DAB上一點(diǎn),DFAC于點(diǎn)EDE=FE,分別延長FDCB交于點(diǎn)G

1)求證:△ADE≌△CFE;

2)若GB=2,BC=4,BD=1,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華在晚上由路燈A走向路燈B.當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)他身后影子的頂部剛好接觸到路燈A的底部;當(dāng)他向前再步行12m到達(dá)點(diǎn)Q時(shí),發(fā)現(xiàn)他身前影子的頂部剛好接觸到路燈B的底部.已知小華的身高是1.6m,兩個(gè)路燈的高度都是9.6m,且APQB.

(1)求兩個(gè)路燈之間的距離;

(2)當(dāng)小華走到路燈B的底部時(shí),他在路燈A下的影長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)yx+1yax+3的圖象交于點(diǎn)P,點(diǎn)P的橫坐標(biāo)為1,

1)關(guān)于x,y的方程組 的解是   ;

2a   

3)求出函數(shù)yx+1yax+3的圖象與x軸圍成的幾何圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O,AB,C的坐標(biāo)分別為(00),(1,2),(3,3)(21)

(1)若圖中的各個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)都乘-1,與原圖案相比,所得圖案有什么變化?畫出圖形并說明一下變化.

(2)若圖中的各個(gè)點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘-1,與原圖案相比,所得圖案有什么變化?畫出圖形并說明一下變化.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某花店準(zhǔn)備購進(jìn)甲、乙兩種花卉,若購進(jìn)甲種花卉20盆,乙種花卉50盆,需要720元;若購進(jìn)甲種花卉40盆,乙種花卉30盆,需要880元.

(1)求購進(jìn)甲、乙兩種花卉,每盆各需多少元?

(2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準(zhǔn)備拿出800元全部用來購進(jìn)這兩種花卉,設(shè)購進(jìn)甲種花卉x盆,全部銷售后獲得的利潤為W元,求W與x之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,考慮到顧客需求,要求購進(jìn)乙種花卉的數(shù)量不少于甲種花卉數(shù)量的6倍,且不超過甲種花卉數(shù)量的8倍,那么該花店共有幾種購進(jìn)方案?在所有的購進(jìn)方案中,哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示的數(shù)為a,點(diǎn)B表示的數(shù)為b,且a,b滿足|a+2|+(3a+b)2=0,O為原點(diǎn).

(1)則a= ,b= ;

(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),

①當(dāng)PO=2PB時(shí),求點(diǎn)P的運(yùn)動(dòng)時(shí)間t;

②當(dāng)點(diǎn)P運(yùn)動(dòng)到線段OB上時(shí),分別取AP和OB的中點(diǎn)E、F,則的值為

(3)有一動(dòng)點(diǎn)Q從原點(diǎn)O出發(fā)第一次向左運(yùn)動(dòng)1個(gè)單位長度,然后在新的位置第二次運(yùn)動(dòng),向右運(yùn)動(dòng)2個(gè)單位長度,在此位置第三次運(yùn)動(dòng),向左運(yùn)動(dòng)3個(gè)單位長度…按照如此規(guī)律不斷地左右運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到2015次時(shí),求點(diǎn)Q所對應(yīng)的有理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店專營一批進(jìn)價(jià)為每件200元的品牌襯衫,每件售價(jià)為300元時(shí),每天可售出40件,若每件降價(jià)10元,則第天多售出10件,請根據(jù)以上信息解答下列問題:

(1)為了使銷售該品牌襯衫每天獲利4500元,并且讓利于顧客,每件售價(jià)應(yīng)為多少元;

(2)該服裝店將該品牌的襯衫銷售完,在補(bǔ)貨時(shí)廠家只剩100件,經(jīng)協(xié)商每件降價(jià)a元,全部拿回。按(1)中的價(jià)格售出80件后,剩余的按八折銷售。售完這100件襯衫獲利20%,求a的值。

查看答案和解析>>

同步練習(xí)冊答案