【題目】如圖,在中,,,以AB為直徑的半圓O交AC于點(diǎn)D,點(diǎn)E是上不與點(diǎn)B,D重合的任意一點(diǎn),連接AE交BD于點(diǎn)F,連接BE并延長(zhǎng)交AC于點(diǎn)G.
(1)求證:;
(2)填空:
①若,且點(diǎn)E是的中點(diǎn),則DF的長(zhǎng)為 ;
②取的中點(diǎn)H,當(dāng)的度數(shù)為 時(shí),四邊形OBEH為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣.某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)圖2中“小說類”所在扇形的圓心角為 度;
(4)若該校共有學(xué)生2500人,估計(jì)該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果
下面有三個(gè)推斷:
①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5;
③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),“正面向上”的頻率一定是0.45.
其中合理的是( )
A.①B.②C.①②D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過直線外一點(diǎn)且與這條直線相切的圓稱為這個(gè)點(diǎn)和這條直線的點(diǎn)線圓.特別地,半徑最小的點(diǎn)線圓稱為這個(gè)點(diǎn)和這條直線的最小點(diǎn)線圓.
在平面直角坐標(biāo)系中,點(diǎn).
(1)已知點(diǎn),,,分別以,為圓心,1為半徑作,,以為圓心,2為半徑作,其中是點(diǎn)和軸的點(diǎn)線圓的是________;
(2)記點(diǎn)和軸的點(diǎn)線圓為,如果與直線沒有公共點(diǎn),求的半徑的取值范圍;
(3)直接寫岀點(diǎn)和直線的最小點(diǎn)線圓的圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在y軸的正半軸上,⊙P交x軸于B、C兩點(diǎn),交y軸于點(diǎn)A,以AC為直角邊作等腰Rt△ACD,連接BD分別交y軸和AC于E、F兩點(diǎn),連接AB.
(1)求證:AB=AD;
(2)若BF=4,DF=6,求線段CD的長(zhǎng);
(3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時(shí),的值是否發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑CD=4,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=2,則∠ACD等于( 。
A.30°B.60°C.30°或60°D.45°或60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,為上一點(diǎn),是半徑上一動(dòng)點(diǎn)(不與,重合),過點(diǎn)作射線,分別交弦,于,兩點(diǎn),過點(diǎn)的切線交射線于點(diǎn).
(1)求證:.
(2)當(dāng)是的中點(diǎn)時(shí),
①若,試證明四邊形為菱形;
②若,且,求的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).
小菲根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小菲的探究過程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)的自變量的取值范圍是___________________.
(2)下表是與的幾組對(duì)應(yīng)值.
… | 1 | 2 | 3 | … | ||||||||
… | 2 | … |
表中的值為____________________________.
(3)如下圖,在平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組對(duì)應(yīng)值所對(duì)應(yīng)的點(diǎn),并畫出該函數(shù)的圖象;
(4)根據(jù)畫出的函數(shù)圖象,寫出:
①時(shí),對(duì)應(yīng)的函數(shù)值約為__________________(結(jié)果保留一位小數(shù));
②該函數(shù)的一條性質(zhì):________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2010河南20題)為鼓勵(lì)學(xué)生參與體育鍛煉,學(xué)校計(jì)劃拿出不超過1600元的資金再購買一批籃球和排球.已知籃球和排球的單價(jià)比為,單價(jià)和為80元.
(1)籃球和排球的單價(jià)分別是多少元?
(2)若要求購買的籃球和排球的總數(shù)量是36個(gè),且購買的籃球的數(shù)量多于25個(gè),有哪幾種購買方案?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com