探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法。請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高。

(1)若BD=h,M時直線BC上的任意一點,M到AB、AC的距離分別為

①   若M在線段BC上,請你結(jié)合圖形①證明:= h;          

②   當點M在BC的延長線上時,,h之間的關(guān)系為      (請直接寫出結(jié)論,不必證明)                         

(2)如圖②,在平面直角坐標系中有兩條直線:y = x + 6 ; :y = -3x+6 若上的一點M到的距離是3,請你利用以上結(jié)論求解點M的坐標。

                                 

                                          圖②


(1)證明:連結(jié)AM

①∵, EM⊥AB , MF⊥AC, BD⊥AC

AC.h = AB. + AC.

又∵AB = AC

∴h =  +  

-  = h

(2)由題意可知,DE = DF =10,

∴△EDF是等腰三角形。

當點M在線段EF上時,依據(jù)(1)中結(jié)論,

∵h = EO=6,∴M到DF(即x軸)的距離也為3.

∴點M的縱坐標為3,此時可求得M(1,3)

當點M在射線FE上時,依據(jù)(1)中結(jié)論

∵h = EO=6,∴M到DF(即x軸)的距離也為9.

∴點M的縱坐標為9,此時可求得M(-1,9)

故點M的坐標為(1,3)或(-1,9)

 


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高.
(1)若BD=h,M是直線BC上的任意一點,M到AB、AC的距離分別為h1,h2
A、若M在線段BC上,請你結(jié)合圖形①證明:h1+h2=h;
B、當點M在BC的延長線上時,h1,h2,h之間的關(guān)系為
 
.(請直接寫出結(jié)論,不必證明)
(2)如圖②,在平面直角坐標系中有兩條直線l1:y=
34
x+6;l2:y=-3x+6.若l2上的一點M到l1的距離是3,請你利用以上結(jié)論求解點M的坐標.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

探究學習:探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高(如圖1).
(1)若等腰△ABC的面積為24 cm2,腰的長為8 cm,則腰AC上的高BD的長為
 
cm;
(2)若BD=h,M是直線BC上的任意一點,M到AB、AC的距離分別為h1、h2
①若M在線段BC上,請你結(jié)合圖2證明:h1+h2=h;
②當點M在BC延長線上時,h1、h2、h之間的關(guān)系為
 
.(直接寫出結(jié)論,不必證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

探究學習:探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高(如圖1).
(1)若等腰△ABC的面積為24 cm2,腰的長為8 cm,則腰AC上的高BD的長為______cm;
(2)若BD=h,M是直線BC上的任意一點,M到AB、AC的距離分別為h1、h2
①若M在線段BC上,請你結(jié)合圖2證明:h1+h2=h;
②當點M在BC延長線上時,h1、h2、h之間的關(guān)系為______.(直接寫出結(jié)論,不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高.
(1)若BD=h,M是直線BC上的任意一點,M到AB、AC的距離分別為h1,h2
A、若M在線段BC上,請你結(jié)合圖形①證明:h1+h2=h;
B、當點M在BC的延長線上時,h1,h2,h之間的關(guān)系為______.(請直接寫出結(jié)論,不必證明)
(2)如圖②,在平面直角坐標系中有兩條直線l1:y=數(shù)學公式x+6;l2:y=-3x+6.若l2上的一點M到l1的距離是3,請你利用以上結(jié)論求解點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年河南省中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高.
(1)若BD=h,M是直線BC上的任意一點,M到AB、AC的距離分別為h1,h2
A、若M在線段BC上,請你結(jié)合圖形①證明:h1+h2=h;
B、當點M在BC的延長線上時,h1,h2,h之間的關(guān)系為______.(請直接寫出結(jié)論,不必證明)
(2)如圖②,在平面直角坐標系中有兩條直線l1:y=x+6;l2:y=-3x+6.若l2上的一點M到l1的距離是3,請你利用以上結(jié)論求解點M的坐標.

查看答案和解析>>

同步練習冊答案