如圖,四邊形ABCD是正方形,點F在BC延長線上,且BF=BD,G為DF中點,BG與DC交于點E,以下結論正確的有
 

①△BCE≌△DCF        ②E是CD中點
③△BCE∽△DGE        ④2DG2=DE•DC.
考點:相似三角形的判定與性質,全等三角形的判定與性質,正方形的性質
專題:
分析:證明BG⊥DF,結合∠BCD=90°得到B、C、G、D四點共圓,得到∠FDC=∠EBC;容易證明①③成立;②不成立;證明△DGE∽△DCF,列出比例式即可證明④成立.
解答:解:∵BF=BD,G為DF中點,
∴BG⊥DF;
∵四邊形ABCD為正方形,
∴∠BCD=90°,BC=CD;
∴B、C、G、D四點共圓,
∴∠FDC=∠EBC;而∠BEC=∠DEG,
∴△BCE∽△DGE,故③正確.
在△BCE與△DCF中,
∠EBC=∠FDC
BC=CD
∠BCE=∠DCF
,
∴△BCE≌△DCF(ASA),故①正確.
∵BF=BD,且BG⊥DF,
∴BG平分∠DBC,故②不正確.
∵∠GDE=∠CDF,∠DGE=∠DCF,
∴△DGE∽△DCF,
∴DG:DC=DE:DF,而DF=2DG,
∴2DG2=DE•DC.故④正確,
∴結論正確的有①③④.
故答案為①③④.
點評:該題以正方形為載體,主要考查了相似三角形的判定及其性質等幾何知識點的應用問題;牢固掌握有關定理是靈活解決問題的基礎和關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

下列正確的是( 。
A、-2ab2的系數(shù)是-2
B、32ab3的次數(shù)是6次
C、37ab5是多項式
D、x2+x-1的常數(shù)項為1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)計算:(-
1
2
2+4
3
sin30°cos30°-
2
cos45°(
+1)0-|-6|
(2)解不等式組
2x+1>x-5
4x≤3x+2
并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

直線l:y=-2x+2m(m>0)與x,y軸分別交于A、B兩點,點M是雙曲線y=
4
x
(x>0)上一點,分別連接MA、MB.
(1)如圖,當點A(
2
3
3
,0)時,恰好AB=AM;∠M1AB=90°試求M1的坐標;
(2)如圖,當m=3時,直線l與雙曲線交于C、D兩點,分別連接OC、OD,試求△OCD面積;
(3)如圖,在雙曲線上是否存在點M,使得以AB為直角邊的△MAB與△AOB相似?如果存在,請直接寫出點M的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一物體沿坡度為1:8的山坡向上移動
65
米,則物體升高了
 
米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,大正方形ABCD內(nèi)有一個小正方形DEFG,對角線DF長為6cm,已知小正方形DEFG向東北方向平移3cm就得到正方形D′E′BG′.
(1)求大正方形ABCD的面積;
(2)求小正方形DEFG移動到正方形D′E′BG′這個過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,A,B是小河同側的兩個村莊,為解決吃水問題,兩村合資在河邊修一個水站.
(1)為使水能同時到達A村和B村,求水站的位置;
(2)為使到A村和B村的管道總長最短,求水站的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若二次函數(shù)y=(a-2)x2+a2-1的最大值為3,則a=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將一副三角板疊放在一起,使直角頂點重合于O點,則∠AOC+∠BOD=
 
度.

查看答案和解析>>

同步練習冊答案