閱讀下面的解答過(guò)程:
化簡(jiǎn)與求值:
1
a
+
1
a2
+a2-2
,其中a=
1
5

解:
1
a
+
1
a2
+a2-2
=
1
a
+
(
1
a
-a)
2
…①
=
1
a
+a-
1
a
…②
=a…③
當(dāng)a=
1
5
時(shí),原式=
1
5
…④
上面的解答是不正確的,請(qǐng)你寫出錯(cuò)在哪一步,并把正確的解答寫出來(lái).
分析:根據(jù)二次根式的性質(zhì),
(
1
a
-a)2
=|
1
a
-a|
,然后確定
1
a
-a的符號(hào),去掉絕對(duì)值符號(hào).
解答:解:上面的解答錯(cuò)在第②步.
解答如下:∵當(dāng)a=
1
5
時(shí),
1
a
>a,
1
a
-a
>0.
1
a
+
1
a2
+a2-2
=
1
a
+
(
1
a
-a)
2
=
1
a
+
1
a
-a=
2
a
-a=10-
1
5
=
49
5
點(diǎn)評(píng):本題考查了應(yīng)用二次根式的性質(zhì)進(jìn)行化簡(jiǎn),即
a2
=|a|
,然后根據(jù)a的符號(hào)去絕對(duì)值符號(hào).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖1,直線AC∥BD,直線AC、BD及直線AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六個(gè)部分.點(diǎn)P是其中的一個(gè)動(dòng)點(diǎn),連接PA、PB,觀察∠APB、∠PAC、∠PBD三個(gè)角.規(guī)定:直線AC、BD、AB上的各點(diǎn)不屬于(1)、(2)、(3)、(4)、(5)、(6)六個(gè)部分中的任何一個(gè)部分.
當(dāng)動(dòng)點(diǎn)P落在第(1)部分時(shí),可得:∠APB=∠PAC+∠PBD,請(qǐng)閱讀下面的解答過(guò)程,并在相應(yīng)的括號(hào)內(nèi)填注理由
解:過(guò)點(diǎn)P作EF∥AC,如圖2
因?yàn)锳C∥BD(已知),EF∥AC(所作),
所以EF∥BD
(平行線的傳遞性)

所以∠BPE=∠PBD
(兩直線平行,內(nèi)錯(cuò)角相等)

同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD
(等量代換)
,
即∠APB=∠PAC+∠PBD.
(1)當(dāng)動(dòng)點(diǎn)P落在第(2)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出∠APB、∠PAC、∠PBD之間滿足的關(guān)系式,不必說(shuō)明理由.
(2)當(dāng)動(dòng)點(diǎn)P在第(3)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出相應(yīng)的結(jié)論.
(3)當(dāng)動(dòng)點(diǎn)P在第(4)部分時(shí),∠APB、∠PAC、∠PBD之間的關(guān)系是怎樣的?請(qǐng)直接寫出相應(yīng)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀下面的解答過(guò)程,回答問(wèn)題.
(-2a2b)2•(a3b2)=(-2a5b32=(-2)2•(a52•(b32=4a10b6
上述過(guò)程中有無(wú)錯(cuò)誤?如果有,請(qǐng)寫出正確的解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知∠1=∠B,∠D=50°,求∠C的度數(shù).請(qǐng)閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式).
解:∵∠1=∠B
(已知)
(已知)

∴AD∥
BC
BC

∴∠D+∠C=
180
180
°
(兩直線平行,同旁內(nèi)角互補(bǔ))
(兩直線平行,同旁內(nèi)角互補(bǔ))

∵∠D=50°(已知)
∴∠C=
130
130
°(等式的性質(zhì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線AB∥CD,直線EF與AB、CD分別相交于點(diǎn)E、F.
(1)如圖1,若∠1=60°,求∠2、∠3的度數(shù);
(2)若點(diǎn)P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),連結(jié)PE、PF,探索∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系:
①當(dāng)點(diǎn)P在圖2的位置時(shí),可得∠EPF=∠PEB+∠PFD;
請(qǐng)閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式).
解:如圖2,過(guò)點(diǎn)P作MN∥AB,
則∠EPM=∠PEB
(兩直線平行,內(nèi)錯(cuò)角相等)
(兩直線平行,內(nèi)錯(cuò)角相等)

∵AB∥CD(已知),MN∥AB(作圖),
∴MN∥CD
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

∴∠MPF=∠PFD
(兩直線平行,內(nèi)錯(cuò)角相等)
(兩直線平行,內(nèi)錯(cuò)角相等)

∠EPM+∠FPM
∠EPM+∠FPM
=∠PEB+∠PFD(等式的性質(zhì))
即∠EPF=∠PEB+∠PFD.
②當(dāng)點(diǎn)P在圖3的位置時(shí),請(qǐng)直接寫出∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系:
∠EPF+∠PEB+∠PFD=360°
∠EPF+∠PEB+∠PFD=360°
;
③當(dāng)點(diǎn)P在圖4的位置時(shí),請(qǐng)直接寫出∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系:
∠EPF+∠PFD=∠PEB
∠EPF+∠PFD=∠PEB

查看答案和解析>>

同步練習(xí)冊(cè)答案