【題目】如圖,AD的角平分線,,垂足分別為點(diǎn)E、點(diǎn)F,連接EFAD相交于點(diǎn)O,下列結(jié)論不一定成立的是  

A. B. C. D.

【答案】C

【解析】

首先運(yùn)用角平分線的性質(zhì)得出DE=DF,再由HL證明Rt△ADE≌Rt△ADF,即可得出AE=AF;根據(jù)SAS即可證明△AEG≌△AFG,即可得到OE=OF.

∵AD是△ABC的角平分線,DE⊥AB,DF⊥AC,

∴DE=DF,∠AED=∠AFD=90°,

Rt△ADE和Rt△ADF中,

∴Rt△ADE≌Rt△ADF(HL),

∴AE=AF;

∵AD是△ABC的角平分線,

∴∠EAO=∠FAO,

在△AEO和△AFO中,

,

∴△AEO≌△AFO(SAS),

∴OE=OF,

故A、B、D選項(xiàng)正確,不符合題意,C選項(xiàng)錯(cuò)誤,符合題意,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,OC平分,C為角平分線上一點(diǎn),過點(diǎn)C,垂足為C,交OB于點(diǎn)D,OB于點(diǎn)E.

判斷的形狀,并說明理由;

,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將連續(xù)的偶數(shù)2,4,6,8……,排成如下表:

(1)十字框中的五個(gè)數(shù)的和與中間的數(shù)16有什么關(guān)系?

(2)設(shè)中間的數(shù)為x,用代數(shù)式表示十字框中的五個(gè)數(shù)的和,

(3)若將十字框上下左右移動(dòng),可框住另外的五個(gè)數(shù),其它五個(gè)數(shù)的和能等于2010嗎?如能,寫出這五個(gè)數(shù),如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某市舉辦的讀好書,講禮儀活動(dòng)中,東華學(xué)校積極行動(dòng),各班圖書角的新書、好書不斷增多,除學(xué)校購(gòu)買外,還有師生捐獻(xiàn)的圖書.下面是七年級(jí)(1)班全體同學(xué)捐獻(xiàn)圖書的情況統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)以上統(tǒng)計(jì)圖中的信息,解答下列問題:

1)該班有學(xué)生多少人?

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)七(1)班全體同學(xué)所捐獻(xiàn)圖書的中位數(shù)和眾數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.

中線AD的取值范圍是 ;

(2)問題解決:

如圖②,在ABC中,D是BC邊上的中點(diǎn),DEDF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)EBC的延長(zhǎng)線上,的平分線BD的平分線CD相交于點(diǎn)D,連接AD,則下列結(jié)論中,正確的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC 中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點(diǎn)P,連接PC,若ABC的面積為8cm2,則BPC的面積為(

A. 4cm2 B. 5cm2 C. 6cm2 D. 7cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,B=60°,∠C=30°,ADAE分別是△ABC的高和角平分線,求DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD邊長(zhǎng)為4,,點(diǎn)E從點(diǎn)A出發(fā)沿著AD、DC方向運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)D出發(fā)以相同的速度沿著DC、CB的方向運(yùn)動(dòng).

如圖1,當(dāng)點(diǎn)EAD上時(shí),連接BE、BF,試探究BEBF的數(shù)量關(guān)系,并證明你的結(jié)論;

的前提下,求EF的最小值和此時(shí)的面積;

當(dāng)點(diǎn)E運(yùn)動(dòng)到DC邊上時(shí),如圖2,連接BE、DF,交點(diǎn)為點(diǎn)M,連接AM,則大小是否變化?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案