【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC= ,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是

【答案】 +1
【解析】解:如圖,連接AM,

由題意得:CA=CM,∠ACM=60°,
∴△ACM為等邊三角形,
∴AM=CM,∠MAC=∠MCA=∠AMC=60°;
∵∠ABC=90°,AB=BC= ,
∴AC=2=CM=2,
∵AB=BC,CM=AM,
∴BM垂直平分AC,
∴BO= AC=1,OM=CMsin60°=
∴BM=BO+OM=1+ ,
故答案為:1+
如圖,連接AM,由題意得:CA=CM,∠ACM=60°,得到△ACM為等邊三角形根據(jù)AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO= AC=1,OM=CMsin60°= ,最終得到答案BM=BO+OM=1+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A和B為圓心,以相同的長(大于 AB)為半徑作弧,兩弧相交于點(diǎn)M和N,作直線MN交AB于點(diǎn)D,交BC于點(diǎn)E,連接CD,下列結(jié)論錯(cuò)誤的是(

A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.

(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個(gè)二次函數(shù)的最大值之和等于(

A.
B.
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD,等腰直角三角板的直角頂點(diǎn)落在正方形的頂點(diǎn)D處,使三角板繞點(diǎn)D旋轉(zhuǎn).
(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時(shí),猜想CE與AF的數(shù)量關(guān)系,并加以證明;

(2)在(1)的條件下,若DE:AE:CE=1: :3,求∠AED的度數(shù);
(3)若BC=4,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DM,DM與AC交于點(diǎn)O,當(dāng)三角板的一邊DF與邊DM重合時(shí)(如圖2),若OF= ,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y= 的一個(gè)交點(diǎn)為P(2,m),與x軸、y軸分別交于點(diǎn)A,B.
(1)求m的值;
(2)若PA=2AB,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】折疊矩形ABCD,使點(diǎn)D落在BC邊上的點(diǎn)F處,若折痕AE=5 ,tan∠EFC= ,則BC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級:1級質(zhì)量為優(yōu);2級質(zhì)量為良;3級質(zhì)量為輕度污染;4級質(zhì)量為中度污染;5級質(zhì)量為重度污染.某城市隨機(jī)抽取了一年中某些天的空氣質(zhì)量檢測結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息,解答下列各題:
(1)本次調(diào)查共抽取了天的空氣質(zhì)量檢測結(jié)果進(jìn)行統(tǒng)計(jì);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中3級空氣質(zhì)量所對應(yīng)的圓心角為°;
(4)如果空氣污染達(dá)到中度污染或者以上,將不適宜進(jìn)行戶外活動(dòng),根據(jù)目前的統(tǒng)計(jì),請你估計(jì)該年該城市只有多少天適宜戶外活動(dòng).(一年天數(shù)按365天計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=kx2+ x+ (k是常數(shù)).
(1)若該函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn),試求k的取值范圍;
(2)若點(diǎn)(1,k)在某反比例函數(shù)圖象上,要使該反比例函數(shù)和二次函數(shù)y=kx2+ x+ 都是y隨x的增大而增大,求k應(yīng)滿足的條件及x的取值范圍;
(3)若拋物線y=kx2+ x+ 與x軸交于A(xA , 0)、B(xB , 0)兩點(diǎn),且xA<xB , xA2+xB2=34,若與y軸不平行的直線y=ax+b經(jīng)過點(diǎn)P(1,3),且與拋物線交于Q1(x1 , y1)、Q2(x2 , y2)兩點(diǎn),試探究 是否為定值,并寫出探究過程.

查看答案和解析>>

同步練習(xí)冊答案