點(diǎn)P(x,y)在第一象限,且x+y=10,點(diǎn)A的坐標(biāo)為(8,0),設(shè)原點(diǎn)為O,△OPA的面積為S.
(1)求S與x的函數(shù)關(guān)系式,寫(xiě)出x的取值范圍,畫(huà)出這個(gè)函數(shù)圖象;
(2)當(dāng)S=12時(shí),求點(diǎn)P的坐標(biāo);
(3)△OPA的面積能大于40嗎?為什么?

(1)S=40﹣4x, 0<x<10,圖象見(jiàn)解析;(2)(7,3);(3)△OPA的面積不能大于40,證明見(jiàn)解析.

解析試題分析:(1)根據(jù)三角形的面積公式△OPA的面積=OA•|yp|列式,即可用含x的解析式表示S=40﹣4x,然后根據(jù)S>0及已知條件,可求出x的取值范圍,根據(jù)一次函數(shù)的性質(zhì)和x的取值范圍可畫(huà)出函數(shù)S的圖象;(2)將S=12代入求得的函數(shù)的解析式,然后求得x、y的值,從而求得點(diǎn)P的坐標(biāo);(3)根據(jù)一次函數(shù)的性質(zhì)及自變量的取值范圍即可判斷.
試題解析:(1)∵A和P點(diǎn)的坐標(biāo)分別是(8,0)、(x,y),
∴△OPA的面積=OA•|yp|,
∴S=×8×|y|=4y,
∵x+y=10,
∴y=10﹣x,
∴S=4(10﹣x)=40﹣4x,
∵S=﹣4x+40>0,
x<10,
又∵點(diǎn)P在第一象限,
∴x>0,
即x的范圍為:0<x<10,
∵S=﹣4x+40,S是x的一次函數(shù),
∴函數(shù)圖象經(jīng)過(guò)點(diǎn)(10,0),(0,40),
所畫(huà)圖象如下:

(2)∵S=﹣4x+40,
∴當(dāng)S=12時(shí),12=﹣4x+40,
解得:x=7,y=3,
即當(dāng)點(diǎn)P的坐標(biāo)為(7,3);
(3)△OPA的面積不能大于40.理由如下:
∵S=﹣4x+40,﹣4<0,
∴S隨x的增大而減小,
又∵x=0時(shí),S=40,
∴當(dāng)0<x<10,S<40,
即△OPA的面積不能大于40.
考點(diǎn):一次函數(shù)和其圖像.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知反比例函數(shù)y1 (k1>0)與一次函數(shù)y2=k2x+1(k2≠0)相交于A、B兩點(diǎn),AC⊥x軸于點(diǎn)C.若△OAC的面積為1,且tan∠AOC=2.

(1)求出反比例函數(shù)與一次函數(shù)的解析式;
(2)請(qǐng)直接寫(xiě)出B點(diǎn)的坐標(biāo),并指出當(dāng)x為何值時(shí),反比例函數(shù)y1的值大于一次函數(shù)y2的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象是第一、三象限的角平分線.

(1)實(shí)驗(yàn)與探究:由圖觀察易知A(0,2)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B(5,3) 、C(-2,5) 關(guān)于直線的對(duì)稱點(diǎn)、的位置,并寫(xiě)出它們的坐標(biāo):             、          ;
(2)歸納與發(fā)現(xiàn):結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),
你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(m,n)關(guān)于第一、三象限的角平分線的對(duì)稱點(diǎn)的坐標(biāo)為           .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)(-2,-4),且與正比例函數(shù)y=x的圖象相交于點(diǎn)(4,a),求:
(1)a的值;
(2)k、b的值;
(3)這兩個(gè)函數(shù)的圖象與y軸相交得到的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象.

(1)求A、B、P三點(diǎn)的坐標(biāo);(2)求四邊形PQOB的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在一次蠟燭燃燒試驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象所提供的信息解答下列問(wèn)題:

(1)甲、乙兩根蠟燭燃燒前的高度分別是         , 從點(diǎn)燃到燃盡所用的時(shí)間分別                
(2)分別求甲、乙兩根蠟燭燃燒時(shí)y與x之間的函數(shù)關(guān)系式;
(3)燃燒多長(zhǎng)時(shí)間時(shí),甲、乙兩根蠟燭的高度相等(不考慮都燃盡時(shí)的情況)?在什么事件段內(nèi),甲蠟燭比乙蠟燭高?在什么時(shí)間段內(nèi),甲蠟燭比乙蠟燭低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,的圖象與反比例函數(shù)的圖象相交于點(diǎn)A(2,3)和點(diǎn)B,與x軸相交于點(diǎn)C(8,0).

(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫(xiě)出當(dāng)x取何值時(shí),y1>y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,雙曲線與直線相交于點(diǎn)A(4,m)、B.

(1)求m的值及直線的函數(shù)表達(dá)式;
(2)求△AOB的面積;
(3)當(dāng)x為何值時(shí),?(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC,∠AOC=900,∠BCO=450,BC=,點(diǎn)C的坐標(biāo)為(-18,0).

(1)求點(diǎn)B的坐標(biāo);
(2)若直線DE交梯形對(duì)角線BO于點(diǎn)D,交y軸于點(diǎn)E,且OE=4,OD=2BD,求直線DE的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案