△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長(zhǎng)為


  1. A.
    42
  2. B.
    32
  3. C.
    42 或 32
  4. D.
    37 或 33
C
分析:本題應(yīng)分兩種情況進(jìn)行討論:
(1)當(dāng)△ABC為銳角三角形時(shí),在Rt△ABD和Rt△ACD中,運(yùn)用勾股定理可將BD和CD的長(zhǎng)求出,兩者相加即為BC的長(zhǎng),從而可將△ABC的周長(zhǎng)求出;
(2)當(dāng)△ABC為鈍角三角形時(shí),在Rt△ABD和Rt△ACD中,運(yùn)用勾股定理可將BD和CD的長(zhǎng)求出,兩者相減即為BC的長(zhǎng),從而可將△ABC的周長(zhǎng)求出.
解答:此題應(yīng)分兩種情況說(shuō)明:
(1)當(dāng)△ABC為銳角三角形時(shí),在Rt△ABD中,
BD===9,
在Rt△ACD中,
CD===5
∴BC=5+9=14
∴△ABC的周長(zhǎng)為:15+13+14=42;
(2)當(dāng)△ABC為鈍角三角形時(shí),
在Rt△ABD中,BD===9,
在Rt△ACD中,CD===5,
∴BC=9-5=4.
∴△ABC的周長(zhǎng)為:15+13+4=32
∴當(dāng)△ABC為銳角三角形時(shí),△ABC的周長(zhǎng)為42;當(dāng)△ABC為鈍角三角形時(shí),△ABC的周長(zhǎng)為32.
故選C.
點(diǎn)評(píng):此題考查了勾股定理及解直角三角形的知識(shí),在解本題時(shí)應(yīng)分兩種情況進(jìn)行討論,易錯(cuò)點(diǎn)在于漏解,同學(xué)們思考問(wèn)題一定要全面,有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,∠A=36°,
(1)用尺規(guī)作圖的方法,過(guò)B點(diǎn)作∠ABC的平分線交AC于D(不寫(xiě)作法,保留作圖痕跡);
(2)求證:BC=BD=AD;
(3)求證:AD2=AC•DC;
(4)設(shè)
CDDA
=x,求x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,在△ABC中,AB=AC,點(diǎn)D,E在直線BC上運(yùn)動(dòng).如果∠DAE=l05°,△ABD∽△ECA,則∠BAC=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)△ABC中,AB=AC,D、E分別是AB、AC的中點(diǎn),若AB=4,BC=6,則△ADE的周長(zhǎng)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在△ABC中,AB=AC,BD是△ABC中線,已知△ABD和△BDC的周長(zhǎng)之差為6,△ABC的周長(zhǎng)是30,求這個(gè)等腰三角形的三邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在鈍角△ABC中,AB=AC,以BC為直徑作⊙O,⊙O與BA、CA的延長(zhǎng)線分別交于D、E兩點(diǎn)精英家教網(wǎng),連接AO、BE、DC.
(1)求證:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案