如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過A(2,0)B(0,-6)兩點

(1)求該二次函數(shù)的解析式
(2)設(shè)該二次函數(shù)的對稱軸與軸交于點C,連結(jié)BA、BC,求△ABC的面積
(1)將A(2,0)B(0,-6)兩點代入得c=-6,b=4.
所以該二次函數(shù)的解析式為.
(2)對稱軸為x=,C點坐標(biāo)為(4,0). △ABC的面積=.
(1)利用待定系數(shù)法求出b,c的值,得到二次函數(shù)解析式;(2)根據(jù)對稱軸方程求出C點坐標(biāo).將△ABC的面積轉(zhuǎn)為坐標(biāo)軸上線段的乘積計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖一,拋物線與x軸正半軸交于A、B兩點,與y軸交于點C,直線經(jīng)過A、C兩點,且AB=2.

(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當(dāng)點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒 ;設(shè),當(dāng)t 為何值時,s有最小值,并求出最小值。
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明在一次高爾夫球比賽中,從山坡下的O點打出一記球向山坡上的球洞A點飛去,球的飛行路線為拋物線. 如果不考慮空氣阻力,當(dāng)球飛行的水平距離為9米時,球達到最大水平高度為12米.已知山坡OA與水平方向的夾角為30o,O、A兩點相距  米.請利用下面所給的平面直角坐標(biāo)系探索下列問題:

(1)求出點A的坐標(biāo);
(2)判斷小明這一桿能否把高爾夫球從O點直接打入球洞A點,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

蔬菜基地種植某種蔬菜,由市場行情分析知,1月份至6月份這種蔬菜的上市時間(月份)與市場售價(元/千克)的關(guān)系如下表:
上市時間(月份)
1
2
3
4
5
6
市場售價(元/千克)
10.5
9
7.5
6
4.5
3
這種蔬菜每千克的種植成本(元/千克)與上市時間(月份)滿足一個函數(shù)關(guān)系,這個函數(shù)的圖象是拋物線的一段(如圖).
(1)寫出上表中表示的市場售價(元/千克)關(guān)于上市時間(月份)的函數(shù)關(guān)系式;
(2)若圖中拋物線過點,寫出拋物線對應(yīng)的函數(shù)關(guān)系式;
(3)由以上信息分析,哪個月上市出售這種蔬菜每千克的收益最大?最大值為多少?(收益=市場售價-種植成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一次函數(shù)的圖象與軸,軸分別交于點.一個二次函數(shù)的圖象經(jīng)過點

(1)求點的坐標(biāo),并畫出一次函數(shù)的圖象;
(2)求二次函數(shù)的解析式及它的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

點(2,5),(4,5)是拋物線上兩點,則拋物線的對稱軸是(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形紙片ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,過點B作BH⊥AD與H,BC=BH=2.動點從點出發(fā),以每秒1個單位的速度沿運動到點停止,在運動過程中,過點交折線于點,將紙片沿直線折疊,點、的對應(yīng)點分別是點、。設(shè)點運動的時間是秒()。
(1)當(dāng)點和點重合時,求運動時間的值;
(2)在整個運動過程中,設(shè)或四邊形與梯形重疊部分面積為,請直接寫出之間的函數(shù)關(guān)系式和相應(yīng)自變量的取值范圍;
(3)平移線段,交線段于點,交線段。在直線上存在點,使為等腰直角三角形。請求出線段的所有可能的長度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖14,矩形ABCD中,AB = 6cm,AD = 3cm,點E在邊DC上,且DE = 4cm.動點P從點A開始沿著A→B→C→E的路線以2cm/s的速度移動,動點Q從點A開始沿著AE以1cm/s的速度移動,當(dāng)點Q移動到點E時,點P停止移動.若點P、Q同時從點A同時出發(fā),設(shè)點Q移動時間為t (s),P、Q兩點運動路線與線段PQ圍成的圖形面積為S (cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面上一點P從點出發(fā),沿射線OM方向以每秒1個單位長度的速度作勻速運動,在運動過程中,以O(shè)P為對角線的矩形OAPB的邊長;過點O且垂直于射線OM的直線與點P同時出發(fā),且與點P沿相同的方向、以相同的速度運動.
(1)在點運動過程中,試判斷AB與y軸的位置關(guān)系,并說明理由.
(2)設(shè)點與直線L都運動了t秒,求此時的矩形OAPB與直線在運動過程中所掃過的區(qū)域的重疊部分的面積S(用含t的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案